论文部分内容阅读
支持向量回归(support vector regression,简称SVR)训练算法需要解决在大规模样本条件下的凸二次规划(quadratic programming,简称QP)问题.尽管此种优化算法的机理已经有了较为明确的认识,但已有的支持向量回归训练算法仍较为复杂且收敛速度较慢.为解决这些问题.首先采用扩展方法使SVR与支撑向量机分类(SVC)具有相似的数学形式,并在此基础上针对大规模样本回归问题提出一种用于SVR的简化SOR(successive overrelaxation)算法.实验表明,这种