论文部分内容阅读
看过这样一个寓言故事:一棵苹果树终于结果了。第一年,它结了10个苹果,9个被拿走,自己得到1个。第二年,它结了100个果子,90个被拿走,自己得到10个。第三年它又结了1000个果子。其实,得到多少果子不是最重要的。最重要的是,苹果树在成长! 摩尔定律(Moore’s Law)也是这样。很多人在讨论摩尔定律什么时候会终结,其实,什么时候终结不重要,重要的是在后摩尔定律时代,半导体行业怎样继续保持成长。
1965年,Intel公司创始人戈登.摩尔(Gordon Moore)著文指出,芯片中晶体管的数量每年会翻番,半导体的性能与容量将以指数式增长,这就是摩尔定律的雏形。1975年,摩尔修正了该定律为:每隔24个月晶体管的数量将翻番。晶体管数量翻倍带来的好处就是:更快、更小、更便宜。这就引出了摩尔定律的经济学效益,因为对芯片来说,集成度越高,晶体管的价格就越便宜。在20世纪60年代初,一个晶体管要10美元左右,随着晶体管越来越小,小到一根头发丝上可以放1000个晶体管时,每个晶体管的价格只有千分之一美分。在摩尔发表这篇文章的年代,芯片的集成度只有几十个晶体管,在以后的26年时间里,芯片集成的晶体管数量增加了3200多倍,从1971年推出的第一款Intel4004处理器的2300个增加到奔腾II处理器的750万个,英特尔最新的Itanium芯片已集成有17亿个硅晶体管。
摩尔定律问世至今已近50年了,人们有理由怀疑,摩尔定律是否快走到头了?半导体工艺制造技术水平在以令人目眩的速度提高,晶体管的几何尺寸不可能无限制的缩小下去,总有一天会达到极限。业界已有专家预计,摩尔定律可能还有十年的持续发展,但每单位晶体管成本下跌的速度将随之减缓,无法再像过去一样快速降低了。其制约的因素一是技术,二是经济。目前180nm节点是最普遍的工艺技术(65nm和250nm次之),但有大量转向28nm的趋势。为什么呢?因为28nm工艺可能是最后一个能为客户带来更低成本、更低功耗,更高性能的工艺节点。随着晶体管降价速度减缓,半导体的价格很可能要提高,只有提高价格才能使芯片制造商能够回收投资,这就是经济原因。在高性能、低功耗和低成本这三个因素中,只能选择其中的两个。英特尔在最近的GSA年会中指出,摩尔定律可做到10nm工艺节点。台积电张忠谋更是语出惊人:摩尔定律大概只能再苟延残喘5~6年时间,也许做到10nm,也许做到7nm。
为什么大家都把10nm节点看做摩尔定律的终点,因为在10nm节点内半导体每单位成本仍可依循摩尔定律下降。在著名的“木桶理论”里有一个“短板”概念,说的是一件事情的成功不是取决于最完美的部分,而是取决于它的薄弱环节。小于10nm的工艺节点,传统的多重曝光(Multi-Pattering)技术将不起作用,新一代的光刻技术(EUV或其他)将主宰芯片的成本。
后摩尔定律时代的出路在哪里?中科院微系统所王曦院士给出了“超越摩尔定律”概念。在单一的CMOS技术推动下,计算时代和通讯时代遵循“摩尔定律”。现在的CMOS“纳技术”已接近物理极限,以传感器为代表的感知时代则依赖“超越摩尔”(More than Moore)跨领域融合创新来推动。MtM技术依赖非数字多元技术,无需遵循“摩尔定律”升级工艺。MtM技术也是物联网、可穿戴设备、智慧城市等新兴领域依赖的基础技术,可以相信在MtM技术融合创新推动下,MtM一定会形成一个方兴未艾的产业。这个产业包括传感器、MEMS、光电、射频、高功率、模拟等领域。
19世纪80年代是铁路呈指数高速增长的年代,上世纪30和40年代是汽车工业指数式发展的年代,飞机制造业也一样,在达到音速之前飞机的性能曾经快速发展。但不管怎样,它们的增长最后都会停下来,半导体也逃不过这个命运。可以预测的是,只有少数的尖端芯片会继续指数式地再发展一两代,比如多核处理器,但我们也许会发现,日常的应用也许并不需要这些最先进的设计。
从经济的角度看,目前建一座12吋晶圆厂需要20-30亿美元,18吋晶圆厂则要花1.4倍之多。由于花不起这笔钱,迫使越来越多的公司退出了芯片这个看起来“高大上”的行业。因此摩尔定律要再维持十年的寿命,也决非易事。
1965年,Intel公司创始人戈登.摩尔(Gordon Moore)著文指出,芯片中晶体管的数量每年会翻番,半导体的性能与容量将以指数式增长,这就是摩尔定律的雏形。1975年,摩尔修正了该定律为:每隔24个月晶体管的数量将翻番。晶体管数量翻倍带来的好处就是:更快、更小、更便宜。这就引出了摩尔定律的经济学效益,因为对芯片来说,集成度越高,晶体管的价格就越便宜。在20世纪60年代初,一个晶体管要10美元左右,随着晶体管越来越小,小到一根头发丝上可以放1000个晶体管时,每个晶体管的价格只有千分之一美分。在摩尔发表这篇文章的年代,芯片的集成度只有几十个晶体管,在以后的26年时间里,芯片集成的晶体管数量增加了3200多倍,从1971年推出的第一款Intel4004处理器的2300个增加到奔腾II处理器的750万个,英特尔最新的Itanium芯片已集成有17亿个硅晶体管。
摩尔定律问世至今已近50年了,人们有理由怀疑,摩尔定律是否快走到头了?半导体工艺制造技术水平在以令人目眩的速度提高,晶体管的几何尺寸不可能无限制的缩小下去,总有一天会达到极限。业界已有专家预计,摩尔定律可能还有十年的持续发展,但每单位晶体管成本下跌的速度将随之减缓,无法再像过去一样快速降低了。其制约的因素一是技术,二是经济。目前180nm节点是最普遍的工艺技术(65nm和250nm次之),但有大量转向28nm的趋势。为什么呢?因为28nm工艺可能是最后一个能为客户带来更低成本、更低功耗,更高性能的工艺节点。随着晶体管降价速度减缓,半导体的价格很可能要提高,只有提高价格才能使芯片制造商能够回收投资,这就是经济原因。在高性能、低功耗和低成本这三个因素中,只能选择其中的两个。英特尔在最近的GSA年会中指出,摩尔定律可做到10nm工艺节点。台积电张忠谋更是语出惊人:摩尔定律大概只能再苟延残喘5~6年时间,也许做到10nm,也许做到7nm。
为什么大家都把10nm节点看做摩尔定律的终点,因为在10nm节点内半导体每单位成本仍可依循摩尔定律下降。在著名的“木桶理论”里有一个“短板”概念,说的是一件事情的成功不是取决于最完美的部分,而是取决于它的薄弱环节。小于10nm的工艺节点,传统的多重曝光(Multi-Pattering)技术将不起作用,新一代的光刻技术(EUV或其他)将主宰芯片的成本。
后摩尔定律时代的出路在哪里?中科院微系统所王曦院士给出了“超越摩尔定律”概念。在单一的CMOS技术推动下,计算时代和通讯时代遵循“摩尔定律”。现在的CMOS“纳技术”已接近物理极限,以传感器为代表的感知时代则依赖“超越摩尔”(More than Moore)跨领域融合创新来推动。MtM技术依赖非数字多元技术,无需遵循“摩尔定律”升级工艺。MtM技术也是物联网、可穿戴设备、智慧城市等新兴领域依赖的基础技术,可以相信在MtM技术融合创新推动下,MtM一定会形成一个方兴未艾的产业。这个产业包括传感器、MEMS、光电、射频、高功率、模拟等领域。
19世纪80年代是铁路呈指数高速增长的年代,上世纪30和40年代是汽车工业指数式发展的年代,飞机制造业也一样,在达到音速之前飞机的性能曾经快速发展。但不管怎样,它们的增长最后都会停下来,半导体也逃不过这个命运。可以预测的是,只有少数的尖端芯片会继续指数式地再发展一两代,比如多核处理器,但我们也许会发现,日常的应用也许并不需要这些最先进的设计。
从经济的角度看,目前建一座12吋晶圆厂需要20-30亿美元,18吋晶圆厂则要花1.4倍之多。由于花不起这笔钱,迫使越来越多的公司退出了芯片这个看起来“高大上”的行业。因此摩尔定律要再维持十年的寿命,也决非易事。