论文部分内容阅读
研究了支持向量机(SVM)的原问题优化及其回归算法.在分析原问题与对偶问题最优化关系的基础上,引入了一种原问题求解的L—MBFGS—SVR算法.该算法在求解无约束优化问题时,引入了一类新的BFGS拟牛顿算法.它利用迭代的梯度和函数值来近似逆Hessian矩阵,以降低计算复杂性;并结合有限内存技术,来解决数据存储问题.仿真表明,该算法总体上优于IHLF—SVR—RFN和SMO算法,是一种有效的大样本非线性回归建模方法.