论文部分内容阅读
本文主要研究了基于迁移学习的无监督跨域人脸表情识别。在过去的几年里,提出的许多方法在人脸表情识别方面取得了令人满意的识别效果。但这些方法通常认为训练和测试数据来自同一个数据集,因此其具有相同的分布。而在实际应用中,这一假设通常并不成立,特别当训练集和测试集来自不同的数据集时,即跨域人脸表情识别问题。为了解决这一问题,本文提出将一种基于联合分布对齐的迁移学习方法 (domain align learning)应用于跨域人脸表情识别,该方法通过找到一个特征变换,将源域和目标域数据映射到一个公共子空间中,