,A network security entity recognition method based on feature template and CNN-BiLSTM-CRF

来源 :信息与电子工程前沿(英文版) | 被引量 : 0次 | 上传用户:wwmmkk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
By network security threat intelligence analysis based on a security knowledge graph (SKG), multi-source threat in-telligence data can be analyzed in a fine-grained manner. This has received extensive attention. It is difficult for traditional named entity recognition methods to identify mixed security entities in Chinese and English in the field of network security, and there are difficulties in accurately identifying network security entities because of insufficient features extracted. In this paper, we propose a novel FT-CNN-BiLSTM-CRF security entity recognition method based on a neural network CNN-BiLSTM-CRF model com-bined with a feature template (FT). The feature template is used to extract local context features, and a neural network model is used to automatically extract character features and text global features. Experimental results showed that our method can achieve an F-score of 86% on a large-scale network security dataset and outperforms other methods.
其他文献
随着社会生产的发展,对棉花育种工作提出越来越高的要求。培育高产优质的棉花新品种显得更为迫切。由于栽培棉遗传基础狭窄,通过传统的种内杂交,难以取得突破性进展。棉属野生资源蕴含丰富的遗传变异,是棉花品种改良的重要遗传资源。然而,由于染色体倍性水平的差异,陆地棉与二倍体野生种之间存在严重的杂交不亲和、F1杂种不育、后代疯狂分离等问题,野生种中大量的优异基因未被开发。因此,在克服种间杂交不亲和、F1杂种不
扁桃(Amygdalus communis L.),别名巴旦杏、巴旦木,俗称美国大杏仁,属于蔷薇科(Rosaceae),李亚科(Prunoideae),扁桃属(Amygdalus)植物,是一种优良的油料树种和干果树种,具有极高的经济价值。
We study the performance of space division multiple access (SDMA) under a non-ideal engineering situation. When the SDMA channel is of high inter-layer correlat
近年来,花铃期季节性干早在我国棉区时有发生,而此时正是棉花对干旱反应最为敏感的时期,严重影响棉花产量和品质的形成。研究花铃期持续干旱影响棉花产量品质形成的生理生态机制,可为探索干旱逆境下提高棉花产量品质的生理调控途径提供理论依据。本研究以泗杂3号(杂交棉)为材料,于2011-2013年在江苏南京(118°50E,32°02N,长江流域下游棉区)南京农业大学进行,采用盆栽方法,以花铃期正常灌水(SR