论文部分内容阅读
三维人体目标检测在智能安防、机器人、自动驾驶等领域具有重要的应用价值。目前基于雷达与图像数据融合的三维人体目标检测方法主要采用两阶段网络结构,分别完成目标概率较高的候选边界框的选取以及对目标候选框进行分类和边界框回归。目标候选边界框的预先选取使两阶段网络结构的检测准确率和定位精度得到提高,但相对复杂的网络结构导致运算速度受到限制,难以满足实时性要求较高的应用场景。针对以上问题,研究了一种基于改进型RetinaNet的三维人体目标实时检测方法,将主干网络与特征金字塔网络结合用于雷达点云和图像特征的提取