1〈γ〈6/5时欧拉-泊松方程组平衡解的存在性

来源 :数学物理学报:A辑 | 被引量 : 0次 | 上传用户:mwchy362
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
可压缩的欧拉-泊松方程组描述的是具有自引力势能的气态星体内部气体的运动发展规律,它由质量守恒方程、动量守恒方程、能量守恒方程及自引力位势满足的泊松方程构成.该文主要研究质量守恒和能量守恒的情况下方程组的平衡解.在绝热常数1〈γ〈6/5和熵函数满足一定的光滑性条件下,引用变量变换将方程组转化成一个半线性椭圆型方程,通过一个类似于Pohozaev等式的恒等式证明了平衡解的存在性.
其他文献
定义了螺形函数的新子族,即ρ次椭圆星形函数和ρ次椭圆形β型螺形函数,并将这些定义推广到多复变数空间中,得到推广的Roper-Suffridge算子在不同空间不同区域上保持ρ次椭圆
得到了亚纯函数族的一个拟正规定则,并给出了它在值分布理论中的一个应用。
该文考虑一类具对数源项波动方程的初边值问题.利用Galerkin方法结合对数Sobolev不等式和对数Gronwall不等式,对所有初始值得到了整体解的存在性.通过引入位势井,给出了解在
该文考察源自半导体材料科学中的双极非等熵Euler-Poisson方程组.运用对称子的技巧与时空混合导数迭代方法,研究了三维空间环上的周期问题.在初值为一个非常数平衡解的小摄动
引入了QCLkR空间和QCLkS空间的概念,以局部自反原理为工具证明了QCLkR空间和QCLkS空间的对偶关系.利用切片给出了QCLkR空间和QCLkS空间的特征刻画,并讨论了它们与其它凸性和
主要讨论一类非线性项在无穷远处渐近|u|^p-2u增长的p-Laplace方程的Dirichlet边值问题,利用环绕定理证明了当λ1 ≤ λ<λ2(λ1为算子(-△p,W1,p0(Ω))第一特征值)时,方程存在非平凡
该文研究如下问题{-△u+u/|x|^2=|u|^2*-2u+g(x),x∈R^N,u(x)→0(|x|→∞),u∈D^1,2(R^N)(0.1)多解的存在性,这里g(x)≥0,g(x)≠0,g(x)∈L^2N/N+2(R-N).证明了:存在常数C(适当小),如果‖g‖L2N/N+2(R^N))≤C,则上
该文在R^3中研究如下Schrodinger-Hartree方程i tψ+△ψ=-(|x|^-1*|ψ|^α)|ψ|^α-2ψ,t〉0,x∈R^3,α≥2.(P)利用Gagliardo-Nirenberg与方程(P)的质量守恒律,能量守恒律建立方程的发展不