论文部分内容阅读
针对多数语音识别系统在噪音环境下性能急剧下降的问题,提出了一种新的语音识别特征提取方法。该方法是建立在听觉模型的基础上,通过组合语音信号和其差分信号的上升过零率获得频率信息,通过峰值检测和非线性幅度加权来获取强度信息,二者组合在一起,得到输出语音特征,再分别用BP神经网络和HMM进行训练和识别。仿真实现了不同信噪比下不依赖人的50词的语音识别,给出了识别的结果,证明了组合差分信息的过零与峰值幅度特征具有较强的抗噪声性能。