基于改进YOLOv4的口罩佩戴检测算法

来源 :计算机与现代化 | 被引量 : 0次 | 上传用户:made5215210
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为解决YOLOv4在目标检测任务中检测速度低、模型参数多等问题,提出一种改进YOLOv4的目标检测算法.将YOLOv4主干网络中的CSPDarknet53替换成Mobilenet用以增强YOLOv4的特征提取网络,PANet原有的3×3标准卷积被深度可分离卷积取代,以降低计算负荷,从而提高识别速度,减少模型参数.然后使用K-means++算法对由8565张图像组成的数据集进行anchor维度聚类,以提升算法精度.同时,搭建行人口罩佩戴及人体测温拍摄系统用以在人群密集场所中执行疫情防控任务.在保证YOLOv4-Mobilenet网络精度的前提下,相较于原算法FPS提升200%、模型参数减少82%.改进后的模型平均每秒可检测67张图片,可以胜任实际应用中的口罩佩戴检测任务,结果表明该模型检测效果好、鲁棒性较强.
其他文献
为准确有效识别出农作物病虫害类别及位置,构建一款农作物病虫害图像识别App系统,为广大农户、研究人员及管理者提供智能信息服务.该系统基于Android平台开发,在所收集的大量病虫害数据集上,开展了Darknet、YOLO等深度网络模型训练和测试,并使用批量正则化、维度聚类和课程设计学习等技术优化模型,实现了181种作物病虫害图像的在线识别检测,为复杂环节下农作物病害及虫害在线识别、监管防控、综合治理等提供技术依据.
为了辅助地铁工程的专业设计人员从BIM模型实例库中快速获取匹配当前设计需求的参考模型,提出一种基于特征匹配的BIM模型混合推荐算法.首先基于Revit二次开发从BIM模型中获取特征数据;随后,利用模型特征参数等基本信息,采用熵权灰色关联模型计算模型实例的推荐度;然后,结合用户交互数据,采用梯度提升决策树算法(GBDT)与逻辑回归(LR)算法的融合模型计算模型实例的推荐度;最后,根据训练数据集的规模动态调整2种推荐度的组合比例.实验表明,该方法不仅避免了系统冷启动问题,并且在足够的用户交互数据支持下有更好的