论文部分内容阅读
为解决无需重新初始化水平集演化模型对初始轮廓敏感的问题,基于过渡区提出一个变分水平集模型。首先从形态学角度提取图像的过渡区,从而获得分割图像的阈值;然后根据这个阈值,加权面积项前的尺度参数修改为一个函数,它在感兴趣的目标内外有相反符号,水平集函数可初始化为一个常值函数。提出的模型不但从根本上解决了对初始轮廓敏感的问题,而且能够实现对图像的快速分割。对合成和真实的图像的实验验证了该模型的有效性。