论文部分内容阅读
针对目前稀疏表示字典学习的惩罚函数版本不一且各有优势的问题,提出基于子编码和全编码联合惩罚的稀疏表示字典学习方法,该方法在字典学习的目标函数中同时加入子编码惩罚函数和全编码惩罚函数。子编码惩罚函数使得学习后的字典在稀疏表示识别时可以用子字典的重构误差和子字典上编码系数的大小来识别,全编码惩罚函数则能直接利用整个字典上的编码系数来识别,通过联合这两个惩罚函数可以获得非常好的识别效果。为了验证所提方法的有效性,在语音情感库和人脸库上与最新的基于字典学习的稀疏表示识别方法 DKSVD和FDDL进行对比,并