论文部分内容阅读
基于大线宽相干光正交频分复用(CO-OFDM)系统,提出了一种可以有效克服符号判决错误的盲载波间干扰(ICI)相位噪声补偿算法。使用该算法之前,先使用无迭代盲(IFB)算法对公共相位误差(CPE)的相位噪声进行补偿。该算法采用了形式简单的代价函数,可大幅减小计算复杂度。该ICI相位噪声补偿算法包括粗略ICI和精细ICI相位噪声补偿两个阶段,先使用平均能量盲(Avg-BL)算法进行粗略ICI相位噪声补偿,再使用公共相位误差分割补偿(CPEC)算法进行精细ICI相位噪声补偿。该CPEC算法对粗略ICI相位噪声补偿后的频域数据进行判决,再将每个接收到的正交频分多路复用(OFDM)时域符号分割为一定数目的亚符号,从而求出每个亚符号中相位噪声的近似平均值。Avg-BL算法有效解决了CPEC算法中的符号判决错误传播问题;CPEC算法在时域OFDM亚符号分割数目较大的情况下,对ICI相位噪声具有较好的补偿效果。对50Gbit/s CO-OFDM系统在传输距离为100km的情况进行了仿真,仿真结果表明,与Avg-BL算法和CPEC算法等ICI相位噪声算法相比,所提算法具有较好的相位噪声补偿效果,且具有较高的频谱利用率。在该算法中,选择合适的时域OFDM亚符号分割数目,可取得较好的补偿效果,且算法复杂度并未显著增加。
Based on the Wide Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) system, a novel ICI phase noise compensation algorithm that can overcome the symbol decision errors effectively is proposed. Before using this algorithm, phase noise of the common phase error (CPE) was first compensated using an iterative non-iterative (IFB) algorithm. The algorithm uses a simple form of cost function, can significantly reduce the computational complexity. The ICI phase noise compensation algorithm includes coarse ICI and fine ICI phase noise compensation. The ICI phase noise compensation is first performed using the Avg-BL algorithm and then the CPEC algorithm is used to refine the ICI phase noise compensation algorithm. ICI phase noise compensation. The CPEC algorithm decides the frequency domain data after rough ICI phase noise compensation, and then divides each received Orthogonal Frequency Division Multiplexing (OFDM) time-domain symbol into a certain number of sub-symbols to find Approximate average of phase noise in sub-symbols. Avg-BL algorithm effectively solves the problem of symbol decision error propagation in CPEC algorithm. CPEC algorithm has better compensation effect on ICI phase noise when the number of OFDM sub-symbol segmentation in time domain is larger. Simulation results show that the proposed algorithm has better performance of phase noise compensation than the ICI phase noise algorithm such as Avg-BL algorithm and CPEC algorithm, when the transmission distance is 100km for 50Gbit / s CO-OFDM system , And has a high spectral efficiency. In this algorithm, we can get a better compensation effect by choosing the appropriate number of OFDM sub-symbol divisions in the time domain, and the complexity of the algorithm does not increase significantly.