互联网金融与银行科技创新

来源 :中国集体经济 | 被引量 : 0次 | 上传用户:lizhuyundao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
文章为探究互联网金融与银行科技创新能力的内在联系,选取2010~2019年我国26家商业银行数据为样本进行实证分析,以净手续费及佣金收入度量银行科技创新能力,以第三方支付、P2P、余额宝交易规模之和度量互联网金融发展水平。研究结果表明,互联网金融与银行科技创新能力正相关。分组回归后发现,大型银行科技创新能力受到互联网金融的影响相较于小型银行而言更加显著,表明在互联网金融的影响下,大型银行表现出的科技创新能力强于小型银行。
其他文献
海工结构通常面临严峻的结构腐蚀和性能劣化问题。基于水泥基热电材料热电(Seebeck)效应的温差发电体系,能够在温差驱动下产生电动势,可利用其实现外加电流式阴极防护的电流自供给,为钢筋提供持久稳定的保护电流。然而,由于水泥基体较高的内阻,传统水泥基热电材料的热电转换效率较低,且不具备结构服役中的劣化自监测特性。纳米二氧化锰(n Mn O2)具有较高量级的Seebeck系数,可作为一种优异的热电功能
学位
农田生态系统作为陆地生态系统重要的组成部分,其碳汇能力在全球碳循环中扮演着非常重要的作用。农田土壤有机碳是判断其土壤质量和土壤养分的重要指标。研究不同农作物表层土壤的有机碳含量分布特征,研究环境因子对土壤有机碳稳定性的影响,分析土壤微生物多样性、群落结构与有机碳含量的相关性,不仅能促进对农业碳汇系统的研究,还能为农业可持续发展提供理论依据。本研究以寿光不同地区的农田土壤为研究对象,从种植方式和农作
学位
图像检索是计算机视觉领域的一个重要研究任务,在大规模数据库中对图像的内容进行判别,根据图像中标志性的特征进而检索出内容相似的图像。图像检索任务仍然面临着学习判别性表示和减少昂贵的劳动密集型注释的挑战。本文从两个方面分析了现有检索任务方法的不足:一方面,深度度量学习可以学习判别性表示,但现有方法忽略了正负样本本身的特征差异性,而且依赖标注性的数据;另一方面,自监督学习可以解决昂贵的劳动密集型注释问题
学位
数字视频技术的广泛应用和信息技术产业的快速发展催生了对超高清视频的视觉质量需求,视频编码技术在这一需求的推动下不断更新迭代。帧间预测参考技术和率失真优化技术作为视频编码领域的两项关键技术,一直以来都是视频编码标准研究的热点问题。本文围绕视频编码参考结构与率失真优化问题展开研究,分别提出了图像组级别、视频帧级别以及编码块级别的优化算法。本文的研究内容分为三个方面。(1)视频编码自适应参考图像管理机制
学位
全球能源的需求与日俱增,对低碳环保的要求越来越高。中国近几年发起“双碳行动”为各行各业带来新的发展机遇。能量桩基础以开发地热能为目的,符合绿色、低碳、可持续的时代发展理念,在工程中有广阔的应用前景。本文在国内外已有研究成果的基础上,探究能量桩埋管的形式、桩身结构、管桩内芯储热材料、碳纤维基脲酶矿化法处理桩周土体4个方面对能量桩热力学性能的影响。本研究基于新兴矿化技术-脲酶诱导碳酸盐矿化沉淀法(EI
学位
当今交通事故频发,其中驾驶员操作失误是主要原因之一。自动驾驶技术的发展为减弱或摆脱人为因素提供了最有效的解决办法,目前是世界公认的汽车发展趋势。其中,局部避障路径规划和路径跟踪控制是自动驾驶汽车的关键,对汽车的智能化水平和行驶安全稳定性有着决定性影响。因此,本文针对自动驾驶汽车局部避障路径规划与路径跟踪控制策略展开研究。主要研究内容如下:采用分层控制架构搭建局部避障路径规划和跟踪控制模型。上层为避
学位
基于深度学习的单视图三维人脸重建任务,旨在利用卷积神经网络将单张2D人脸图像建模出准确逼真的3D人脸模型,该技术被广泛地应用于三维游戏、影视广告、人脸动画、人脸识别等场景中。近年来深度学习技术飞速发展,进一步加快了三维人脸重建课题的研究进程,卷积神经网络也为三维人脸重建的研究打开了新思路。尽管如此,三维人脸重建研究工作中仍然存在许多困难,比如带标注的数据集难以获取,复杂的神经网络难以训练,重建精度
学位
随着城市化进程的加快,越来越多的人涌入经济比较发达的地区,然而土地面积是有限的,供不应求,出现用地面积紧张的现象,导致房价的攀升,让地产公司和投资者赚的盆满盈钵,然而随着限购、限贷等一系列国家限制性政策的出台以及新冠疫情的影响,促使曾经蒸蒸日上的地产行业步入了经济衰退期,在此背景下,地产公司纷纷转变战略措施,以期在严峻的形势下保存体力,等待地产暖冬的到来,因此,采取合理科学的业绩评价方法成为了指引
学位
人体行为分析一直是计算机视觉领域的关键性问题。而人体姿态估计和骨架动作识别作为人体行为分析的两大基础任务,也得到了研究员们越来越多的关注。不同于基于人体模板来进行关键点特征提取的传统方法,最近基于图神经网络的深度学习方法取得了很好的性能。基于图神经网络的方法将人体关节点作为图的顶点,将基于身体物理连接的两个关节点之间的骨骼作为图的边,以这种方式建立图结构并在该图结构上进行关节点特征融合。尽管这些方
学位
为解决Ti-6Al-4V钛合金表面激光熔覆Al2O3-ZrO2陶瓷涂层易出现裂纹、气孔等缺陷的问题,有效增强Ti-6Al-4V钛合金耐高温、耐磨损性能,扩大其在高温、重载等严苛条件下的使用范围。综合运用理论分析、有限元仿真及实验研究等方法,开展陶瓷熔覆层裂纹抑制机理研究及熔覆工艺分析。揭示Al2O3-ZrO2熔覆层裂纹萌生及生长机理,阐明激光熔覆工艺对陶瓷熔覆层裂纹敏感性的影响规律。探索并提出钛合
学位