应用题的算术解法与方程解法

来源 :湖南教育 | 被引量 : 0次 | 上传用户:shijun3541
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
二.算术解法和方程解法的联系从上例的解答过程中不难看出,方程解法中出现的含有未知数的代数式,如13-x 和3(x-2.46)等,是以简单应用题的算术解法为基础的。没有这个基础,是无法将这些数量关系用代数式和方程表达出来的。其次,用方程解应用题时需要对求出的未知数进行检验,而验算的过程完全是用算术方法。因此,不能想象没有掌握简单应用题的算术解法的人,能用 Second, the relationship between the mathematical solution and the solution of the equation From the solution of the above example is not difficult to see the equation solution appears in the algebraic equations with unknown numbers, such as 13-x and 3 (x-2.46), etc., is a simple arithmetic problem Solution-based. Without this foundation, it is impossible to express these relations of numbers by algebraic equations and equations. Second, the application of equations to solve the problem requires the unknowns to be tested, and checking the process is entirely mathematical method. Therefore, one can not imagine anyone who does not have an arithmetic solution to a simple problem
其他文献
目的:分析广州市越秀区 1996~ 1999年全人群恶性肿瘤患者生存率,为今后越秀区恶性肿瘤早期发现及早期诊断的效果评价提供参考依据。方法:采用寿命表法计算生存率,并对不同年龄、性