论文部分内容阅读
针对流形学习算法普遍存在对噪声敏感的问题,提出一种克服噪声的鲁棒Laplacian特征映射算法。该算法从Laplacian特征映射出发,在降维过程中,对样本点的邻域范围采用局部PCA的方法,以识别和剔除包含的噪声点,并在重构低维嵌入坐标的同时保持流形光滑连续的整体性,较好地改善了算法的特征提取性能。实验结果表明,所提算法有效地提高了对噪声的鲁棒性。