论文部分内容阅读
摘要
斑马片病是一种可对马铃薯等茄科作物造成严重危害的病害,其病原为Candidatus Liberibacter solanacearum,主要通过马铃薯木虱(Bactericera cockerelli)等介体进行传播。该病害主要分布于美国、墨西哥、中美洲各国和新西兰等国家,虽然目前中国没有发生的报道,但具备该病害传入和发生的条件。本文对斑马片病的发生发展过程,病原基因组学、分子检测技术、防控措施及对我国的风险等进行讨论,对于全面了解该病害,防范其传入我国并在我国流行具有重要意义。
关键词
斑马片病; Candidatus Liberibacter solanacearum; 马铃薯木虱; 分子检测
斑马片病(zebra chip,ZC)可危害马铃薯、番茄、茄子、绿番茄、树番茄等茄科作物,是马铃薯上的一种毁灭性病害,严重影响其产量与品质[1],其病原为Candidatus Liberibacter solanacearum,简称Lso。此外,欧洲多国报道该病可危害胡萝卜和芹菜[2]。目前斑马片病已在北美洲(墨西哥、美国),中美洲(危地马拉、洪都拉斯、尼加拉瓜),大洋洲[3](新西兰)和欧洲[4](芬兰、法国、挪威、西班牙、瑞典)发生并造成严重经济损失。
斑马片病于1994年在墨西哥东北部城市萨尔提略被首次报道,2000年美国德克萨斯州报道了该病的发生。短短几年内,该病害的发生面积和频率大大增加[5],相继在美国多个地区发生[67]。墨西哥的大多数马铃薯产区也发生了斑马片病[8],严重时发生率达100%,造成巨大经济损失。2008年在新西兰发现该病的流行,60%以上的马铃薯田被感染,染病薯块的品质和商业价值严重下降[910]。中美洲地区的危地马拉、洪都拉斯、萨尔瓦多和尼加拉瓜也已报道该病害的发生[11]。由胡萝卜木虱(Trioza apicalis)传播的斑马片病在欧洲可造成100%的农田损失[12]。
1 危害症状
斑马片病主要危害寄主植物的叶片、枝干和果实等部位,在不同寄主甚至同一寄主不同品种上的危害症状及危害程度均有差异。症状主要有新叶褪绿黄化,叶片变尖变紫,卷曲,严重时叶片卷曲成杯状(图1 a和b);茎秆节间缩短,产生腋生芽,节点肿大,基部产生气生薯;受侵染的马铃薯块茎出现坏疽斑和黑色条纹,薯片经油炸后黑色条纹会更加明显,很像斑马身上的条纹,该病害因此得名斑马片病[13] (图1c~f)。番茄染病后果实畸形,呈草莓状,子房发育不均衡,甚至不结果,导致产量降低。斑马片病在叶片上的症状与一些木虱引起的黄叶病和马铃薯紫顶植原体病害症状相似。
与引起柑橘黄龙病的Candidatus Liberibacter相比,Lso对热更敏感,其最适发病温度为27~32℃。当温度低于或等于17℃时,症状发展会显著减缓但不阻止Lso在马铃薯上的发育。当温度高于32℃时,用携带Lso的马铃薯木虱(Bactericera cockerelli)接种马铃薯植株,未观察到斑马片病的发病症状,也没在其上检测到Lso病原[14]。
2 病原
虽然1994年就有斑马片病发生的报道,但多年后才明确其病原。2009年Liefting等用电镜在感染斑马片病的马铃薯和番茄植株韧皮部筛管内观察到了大量大小为0.2 μm×4 μm的类细菌。这些类细菌形状多样,并存在一个微弱的可染色中间区域。基因分析显示该病菌与柑橘黄龙病菌具有较高的相似性,由于寄主多为茄科作物,故将其命名为Candidatus Liberibacter solanacearum[9]。
2011年,Lin等[15]完成了Lso的全基因组测序(表1),通过比较亚洲柑橘黄龙病菌(Ca. L.asiaticus)、美洲柑橘黄龙病菌(Ca. L.americanus)和Lso三者间的基因组发现,在基因组结构和序列相似性上,与亚洲柑橘黄龙病菌相比,美洲柑橘黄龙病菌与Lso的基因组更为相似。
Munyaneza等[16]认为Lso可能存在5种地理单倍型(haplotypes)。通过对16S rRNA 的SNPs、16S/23S ISR、50S rplJ和rplL 核糖体蛋白基因进行分析表明:单倍型A和B可引起马铃薯和其他茄科作物的斑马片病[17],由马铃薯木虱(B.cockerelli)传播。其他3种单倍型(C、D和E)可引起胡萝卜斑马片病[1819],由胡萝卜木虱(T.apicalis)和Bactericera trigonica传播。A型主要发生在洪都拉斯和危地马拉、遍及墨西哥西部到美国西部的亚利桑那州、加利福尼亚州、俄勒冈州、华盛顿以及新西兰[20]。B型主要在墨西哥东部,向北遍布德克萨斯州和美国中部。上述两种单倍型在德克萨斯州、堪萨斯州和内布拉斯加州地区混合发生。C型在芬兰、瑞典和挪威的胡萝卜上发现[17,19],由胡萝卜木虱传播。D和E型主要发生在西班牙,加纳利群岛和摩洛哥[1920],由B.trigonica传播。目前还不清楚这5种单倍型在寄主植物或昆虫介体上的生物学差异。
3 病害的传播
2007年Munyaneza等[1]首次提出马铃薯木虱是斑马片病的传播介体,其通过取食染病植物携带Lso并进行传播[16]。Lso在马铃薯木虱体内的潜伏期为2周左右[2122]。由于番茄植株中Lso浓度明显高于马铃薯中的浓度[22],当木虱取食染病番茄植株时潜伏期会缩短。马铃薯木虱成虫从携带Lso并传播到马铃薯上,到引起马铃薯发病的过程只需要2~6 h[23]。此外,Lso也能通过嫁接侵染马铃薯,但传播速度比通过木虱传播慢得多。马铃薯植株被携带Lso的马铃薯木虱取食后,在块茎上表现症状一般需要3周左右[24]。斑马片病可造成马铃薯块茎中含糖量显著减少,而且症状会在储存过程中继续发展。发病种薯一般不能发芽,或产生毛发状芽(hair sprouts),植株长势较弱。 胡萝卜木虱也是斑马片病的传播介体[25]。可引起胡萝卜和芹菜的斑马片病。最近研究表明Lso可随胡萝卜种子传播[26]。
4 分子检测方法
目前报道用于Lso的分子检测方法主要包括常规PCR、巢式PCR、多重PCR和实时荧光PCR等,效果较好且应用较多的PCR方法主要有8种(表2)。
5 防控措施
目前所有防控马铃薯斑马片病的措施都是针对马铃薯木虱进行的,加强该虫的早期监测和防控对于减少田间木虱的繁殖和斑马片病的发生都具有重要作用[3233]。可采用黄色粘板、水盘、捕虫网等多种方法对田块及其周围的木虱进行监测。化学防治是当前防控马铃薯木虱的主要方法。尽管有很多种类的杀虫剂对该昆虫有效,但其还是很难控制[34],而且传统的杀虫剂只能减少木虱的种群数量,限制斑马片病的发展,却不能有效控制斑马片病发生。
6 斑马片病的传入风险及在我国的适生性分析
Munyaneza[16]认为马铃薯斑马片病的传播必须依靠马铃薯木虱,因为植株染病后存活期都很短暂,随块茎传播的可能性很小。然而Pitman等[35]的试验表明,在没有马铃薯木虱存在的情况下,Lso也可以通过种薯薯块转移到新生的植株叶片,并能够传播给新生马铃薯块茎。该病原物除通过昆虫介体传播外,还可通过嫁接、染病植株、带菌种子和马铃薯种薯等进行传播和扩散。王茹琳等[36]根据该病害目前的分布和适宜环境条件,分析了Lso在中国的适生性分布,认为该病在我国的高风险区为重庆、陕西大部、贵州北部、四川东部、河南大部以及山东半岛等地区;中风险区分布较广,以高风险区为中心向外扩散。
马铃薯种薯和胡萝卜种子的国际贸易都是Lso远距离传播的可能途径,国外检疫部门高度重视,EPPO(欧洲和地中海植物保护组织)已将该病原菌列为A1类植物检疫性有害生物[4]。综合考虑斑马片病侵入我国的风险:(1)适生范围广,危害性大;(2)我国幅员辽阔,完全具备该病害发生发展的气候及寄主条件;(3)其主要寄主马铃薯已上升为我国第四大主粮作物,种植面积和产量均居世界第一位[37],经济影响大。因此,斑马片病一旦传入将对我国马铃薯、番茄、胡萝卜等产业造成严重威胁。另外,由于马铃薯木虱和胡萝卜木虱自身对寄主的危害不大,检疫重要性未受到足够重视,在检疫过程中容易忽视其作为传播介体的风险,因此,口岸检疫中应加强来自疫区的植物产品中传病昆虫介体的重视。
参考文献
[1] Munyaneza J E, Crosslin J M, Upton J E.Association of Bactericera cockerelli (Homoptera: Psyllidae) with zebra chip, a new potato disease in southwestern United States and Mexico [J]. Journal of Economic Entomology, 2007, 100(3): 656663.
[2] AlfaroFernándezm A, Cebrián M C, Villaescusa F J, et al. First report of ‘Candidatus Liberibacter solanacearum’ in carrot in mainland Spain [J]. Plant Disease, 2012, 96(4): 582.
[3] Munyaneza J E.Zebra chip disease of potato: biology, epidemiology, and management [J]. American Journal of Potato Research,2012, 89(5): 329350.
[4] http:∥www.eppo.int/QUARANTINE/Alert_List/bacteria/Liberibacter_psyllaurous.htm
[5] Abad J A, Bandla M, FrenchMonar R D, et al. First report of the detection of ‘Candidatus Liberibacter’ species in zebra chip diseaseinfected potato plants in the United States[J]. Plant Disease, 2009, 93(1): 108109.
[6] Secor G A, Rivera V V, Abad J A, et al. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR [J]. Plant Disease, 2009, 93(6): 574583.
[7] Crosslin J M, Olsen N, Nolte P.First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoesin Idaho [J]. Plant Disease, 2012, 96(3): 453.
[8] Munyaneza J E, Sengoda V G, Crosslin J M, et al. First report of ‘Candidatus Liberibacter psyllaurous’ in potato tubers with zebra chip disease in Mexico [J]. Plant Disease, 2009, 93(5): 552. [9] Liefting L W, Sutherland P W, Ward L I, et al. A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops [J]. Plant Disease, 2009, 93(3): 208214.
[10]Liefting L W, PerezEgusquiza Z C, Clover G R G, et al. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand [J]. Plant Disease, 2008, 92(10): 1474.
[11]Bextine B, Aguilar E, Rueda A R, et al. First report of Candidatus Liberibacter solanacearum on tomato in El Salvador[J]. Plant Disease, 2013, 97(9): 1245.
[12]Munyaneza J E, Fisher T W, Sengoda V G, et al. First report of “Candidatus Liberibacter solanacearum” associated with psyllidaffected carrots in Europe [J]. Plant Disease, 2010, 94(5): 639.
[13]田茜, 牟海青, 赵文军, 等. 一种引起茄科作物病害的病原:Candidatus Liberibacter solanacearum [J]. 植物检疫, 2012, 26(2): 3136.
[14]Munyaneza J E, Sengoda V G, Buchman J L, et al. Effects of temperature on ‘Candidatus Liberibacter solanacearum’and zebra chip potato disease symptom development [J]. Plant Disease, 2012, 96(1): 1823.
[15]Lin Hong, Lou Binghai, Glynn J M, et al. The complete genome sequence of “Candidatus Liberibacter solanacearum”, the bacterium associated with potato zebra chip disease[J]. PLoS ONE, 2011, 6(4): e19135.
[16]Munyaneza J E.Zebra chip disease, Candidatus Liberibacter, and potato psyllid: A global threat to the potato industry [J].American Journal of Potato Research, 2015, 92(2): 230235.
[17]Nelson W R, Fisher T W, Munyaneza J E.Haplotypes of “Candidatus Liberibacter solanacearum” suggest longstanding separation[J]. European Journal of Plant Pathology, 2011, 130(1): 512.
[18]Teresani G R, Bertolini E, AlfaroFernanndez A, et al. Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of realtime PCR method for its detection [J]. Phytopathology, 2014, 104(8): 804811.
[19]Nelson W R, Sengoda V G, AlfaroFernanndez A O, et al. A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region [J]. European Journal of Plant Pathology, 2013, 135(4): 633639.
[20]Tahzima R, Maes M, Achbani E H, et al. First report of ‘Candidatus Liberibacter solanacearum’ on carrot in Africa[J]. Plant Disease, 2014, 98(10): 1426.
[21]Cooper W R, Sengoda V G, Munyaneza J E.Localization of ‘Candidatus Liberibacter solanacearum’ (Rhizobiales: Rhizobiaceae) in Bactericera cockerelli (Hemiptera: Triozidae)[J]. Annals of the Entomological Society of America, 2014, 107(1): 204210. [22]Sengoda V G, Buchman J L, Henne D C, et al. Candidatus Liberibacter solanacearum titer over time in the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), following acquisition from infected potato and tomato plants [J]. Journal of Economic Entomology, 2013, 106(5): 19641972.
[23]Sandanayaka W R M, Moreno A, Tooman L K, et al. Stylet penetration activities linked to the acquisition and inoculation of Candidatus Liberibacter solanacearum by its vector tomato potato psyllid[J]. Entomologia Experimentalis et Applicata, 2014, 151(2): 170181.
[24]Buchman J L, Fisher T W, Sengoda V G, et al. Zebra chip progression: from inoculation of potato plants with liberibacter to development of disease symptoms in tubers[J]. American Journal of Potato Research, 2012, 89(2): 159168.
[25]Munyaneza J E, Fisher T W, Sengoda V G, et al. Association of “Candidatus Liberibacter solanacearum” with the psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe [J]. Journal of Economic Entomology, 2010, 103(4): 10601070.
[26]Bertolini E, Teresani G R, Loiseau M, et al. Transmission of ‘Candidatus Liberibacter solanacearum’ in carrot seeds[J]. Plant Pathology, 2015, 64(2): 276285.
[27]Wen A, Mallik I, Alvarado V Y, et al. Detection, distribution, and genetic variability of ‘Candidatus Liberibacter’ species associated with zebra chip complex disease of potato in North America[J]. Plant Disease, 2009, 93(11): 11021115.
[28]Hansen A K, Trumble J T, Stouthamer R, et al. A new huanglongbing species, ‘Candidatus Liberibacter psyllaurous’ found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc)[J]. Applied and Environmental Microbiology, 2008, 74(18): 58625865.
[29]Li Wenbin, Abad J A, FrenchMonar R D, et al. Multiplex realtime PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip[J]. Journal of Microbiological Methods, 2009, 78(1): 5965.
[30]Ravindran A, Levy J, Pierson E, et al. Development of primers for improved PCR detection of the potato zebra chip pathogen, ‘Candidatus Liberibacter solanacearum’[J]. Plant Disease, 2011, 95(12): 15421546.
[31]Liefting L W, Veerakone S, Ward L I, et al. First report of ‘Candidatus Phytoplasma australiense’ in potato[J]. Plant Disease, 2009, 93(9): 969.
[32]Henne D C, Workneh F, Wen A, et al. Characterization and epidemiological significance of potato plants grown from seed tubers affected by zebra chip disease [J]. Plant Disease, 2010, 94(6): 659665.
[33]Butler C D, Trumble J T.Spatial dispersion and binomial sequential sampling for the potato psyllid (Hemiptera: Triozidae) on potato [J]. Pest Management Science, 2012, 68(6): 865869.
[34]Gharalari A H, Nansen C, Lawson D S, et al. Knockdown mortality, repellency, and residual effects of insecticides for control of adult Bactericera cockerelli (Hemiptera: Psyllidae)[J]. Journal of Economic Entomology, 2009, 102(3): 10321038.
[35]Pitman A R, Drayton G M, Kraberger S J, et al. Tuber transmission of ‘Candidatus Liberibacter solanacearum’ and its association with zebra chip on potato in New Zealand [J]. European Journal of Plant Pathology, 2011, 129(3): 389398.
[36]王茹琳, 高晓清, 姜淦, 等. 茄科作物新病原Candidatus Liberibacter solanacearum入侵我国的风险分析[J]. 江西农业学报, 2015, 27(1): 4246.
[37]罗其友, 刘洋, 高明杰, 等. 中国马铃薯产业现状与前景[J]. 农业展望, 2015 (3): 3540.
(责任编辑:田 喆)
斑马片病是一种可对马铃薯等茄科作物造成严重危害的病害,其病原为Candidatus Liberibacter solanacearum,主要通过马铃薯木虱(Bactericera cockerelli)等介体进行传播。该病害主要分布于美国、墨西哥、中美洲各国和新西兰等国家,虽然目前中国没有发生的报道,但具备该病害传入和发生的条件。本文对斑马片病的发生发展过程,病原基因组学、分子检测技术、防控措施及对我国的风险等进行讨论,对于全面了解该病害,防范其传入我国并在我国流行具有重要意义。
关键词
斑马片病; Candidatus Liberibacter solanacearum; 马铃薯木虱; 分子检测
斑马片病(zebra chip,ZC)可危害马铃薯、番茄、茄子、绿番茄、树番茄等茄科作物,是马铃薯上的一种毁灭性病害,严重影响其产量与品质[1],其病原为Candidatus Liberibacter solanacearum,简称Lso。此外,欧洲多国报道该病可危害胡萝卜和芹菜[2]。目前斑马片病已在北美洲(墨西哥、美国),中美洲(危地马拉、洪都拉斯、尼加拉瓜),大洋洲[3](新西兰)和欧洲[4](芬兰、法国、挪威、西班牙、瑞典)发生并造成严重经济损失。
斑马片病于1994年在墨西哥东北部城市萨尔提略被首次报道,2000年美国德克萨斯州报道了该病的发生。短短几年内,该病害的发生面积和频率大大增加[5],相继在美国多个地区发生[67]。墨西哥的大多数马铃薯产区也发生了斑马片病[8],严重时发生率达100%,造成巨大经济损失。2008年在新西兰发现该病的流行,60%以上的马铃薯田被感染,染病薯块的品质和商业价值严重下降[910]。中美洲地区的危地马拉、洪都拉斯、萨尔瓦多和尼加拉瓜也已报道该病害的发生[11]。由胡萝卜木虱(Trioza apicalis)传播的斑马片病在欧洲可造成100%的农田损失[12]。
1 危害症状
斑马片病主要危害寄主植物的叶片、枝干和果实等部位,在不同寄主甚至同一寄主不同品种上的危害症状及危害程度均有差异。症状主要有新叶褪绿黄化,叶片变尖变紫,卷曲,严重时叶片卷曲成杯状(图1 a和b);茎秆节间缩短,产生腋生芽,节点肿大,基部产生气生薯;受侵染的马铃薯块茎出现坏疽斑和黑色条纹,薯片经油炸后黑色条纹会更加明显,很像斑马身上的条纹,该病害因此得名斑马片病[13] (图1c~f)。番茄染病后果实畸形,呈草莓状,子房发育不均衡,甚至不结果,导致产量降低。斑马片病在叶片上的症状与一些木虱引起的黄叶病和马铃薯紫顶植原体病害症状相似。
与引起柑橘黄龙病的Candidatus Liberibacter相比,Lso对热更敏感,其最适发病温度为27~32℃。当温度低于或等于17℃时,症状发展会显著减缓但不阻止Lso在马铃薯上的发育。当温度高于32℃时,用携带Lso的马铃薯木虱(Bactericera cockerelli)接种马铃薯植株,未观察到斑马片病的发病症状,也没在其上检测到Lso病原[14]。
2 病原
虽然1994年就有斑马片病发生的报道,但多年后才明确其病原。2009年Liefting等用电镜在感染斑马片病的马铃薯和番茄植株韧皮部筛管内观察到了大量大小为0.2 μm×4 μm的类细菌。这些类细菌形状多样,并存在一个微弱的可染色中间区域。基因分析显示该病菌与柑橘黄龙病菌具有较高的相似性,由于寄主多为茄科作物,故将其命名为Candidatus Liberibacter solanacearum[9]。
2011年,Lin等[15]完成了Lso的全基因组测序(表1),通过比较亚洲柑橘黄龙病菌(Ca. L.asiaticus)、美洲柑橘黄龙病菌(Ca. L.americanus)和Lso三者间的基因组发现,在基因组结构和序列相似性上,与亚洲柑橘黄龙病菌相比,美洲柑橘黄龙病菌与Lso的基因组更为相似。
Munyaneza等[16]认为Lso可能存在5种地理单倍型(haplotypes)。通过对16S rRNA 的SNPs、16S/23S ISR、50S rplJ和rplL 核糖体蛋白基因进行分析表明:单倍型A和B可引起马铃薯和其他茄科作物的斑马片病[17],由马铃薯木虱(B.cockerelli)传播。其他3种单倍型(C、D和E)可引起胡萝卜斑马片病[1819],由胡萝卜木虱(T.apicalis)和Bactericera trigonica传播。A型主要发生在洪都拉斯和危地马拉、遍及墨西哥西部到美国西部的亚利桑那州、加利福尼亚州、俄勒冈州、华盛顿以及新西兰[20]。B型主要在墨西哥东部,向北遍布德克萨斯州和美国中部。上述两种单倍型在德克萨斯州、堪萨斯州和内布拉斯加州地区混合发生。C型在芬兰、瑞典和挪威的胡萝卜上发现[17,19],由胡萝卜木虱传播。D和E型主要发生在西班牙,加纳利群岛和摩洛哥[1920],由B.trigonica传播。目前还不清楚这5种单倍型在寄主植物或昆虫介体上的生物学差异。
3 病害的传播
2007年Munyaneza等[1]首次提出马铃薯木虱是斑马片病的传播介体,其通过取食染病植物携带Lso并进行传播[16]。Lso在马铃薯木虱体内的潜伏期为2周左右[2122]。由于番茄植株中Lso浓度明显高于马铃薯中的浓度[22],当木虱取食染病番茄植株时潜伏期会缩短。马铃薯木虱成虫从携带Lso并传播到马铃薯上,到引起马铃薯发病的过程只需要2~6 h[23]。此外,Lso也能通过嫁接侵染马铃薯,但传播速度比通过木虱传播慢得多。马铃薯植株被携带Lso的马铃薯木虱取食后,在块茎上表现症状一般需要3周左右[24]。斑马片病可造成马铃薯块茎中含糖量显著减少,而且症状会在储存过程中继续发展。发病种薯一般不能发芽,或产生毛发状芽(hair sprouts),植株长势较弱。 胡萝卜木虱也是斑马片病的传播介体[25]。可引起胡萝卜和芹菜的斑马片病。最近研究表明Lso可随胡萝卜种子传播[26]。
4 分子检测方法
目前报道用于Lso的分子检测方法主要包括常规PCR、巢式PCR、多重PCR和实时荧光PCR等,效果较好且应用较多的PCR方法主要有8种(表2)。
5 防控措施
目前所有防控马铃薯斑马片病的措施都是针对马铃薯木虱进行的,加强该虫的早期监测和防控对于减少田间木虱的繁殖和斑马片病的发生都具有重要作用[3233]。可采用黄色粘板、水盘、捕虫网等多种方法对田块及其周围的木虱进行监测。化学防治是当前防控马铃薯木虱的主要方法。尽管有很多种类的杀虫剂对该昆虫有效,但其还是很难控制[34],而且传统的杀虫剂只能减少木虱的种群数量,限制斑马片病的发展,却不能有效控制斑马片病发生。
6 斑马片病的传入风险及在我国的适生性分析
Munyaneza[16]认为马铃薯斑马片病的传播必须依靠马铃薯木虱,因为植株染病后存活期都很短暂,随块茎传播的可能性很小。然而Pitman等[35]的试验表明,在没有马铃薯木虱存在的情况下,Lso也可以通过种薯薯块转移到新生的植株叶片,并能够传播给新生马铃薯块茎。该病原物除通过昆虫介体传播外,还可通过嫁接、染病植株、带菌种子和马铃薯种薯等进行传播和扩散。王茹琳等[36]根据该病害目前的分布和适宜环境条件,分析了Lso在中国的适生性分布,认为该病在我国的高风险区为重庆、陕西大部、贵州北部、四川东部、河南大部以及山东半岛等地区;中风险区分布较广,以高风险区为中心向外扩散。
马铃薯种薯和胡萝卜种子的国际贸易都是Lso远距离传播的可能途径,国外检疫部门高度重视,EPPO(欧洲和地中海植物保护组织)已将该病原菌列为A1类植物检疫性有害生物[4]。综合考虑斑马片病侵入我国的风险:(1)适生范围广,危害性大;(2)我国幅员辽阔,完全具备该病害发生发展的气候及寄主条件;(3)其主要寄主马铃薯已上升为我国第四大主粮作物,种植面积和产量均居世界第一位[37],经济影响大。因此,斑马片病一旦传入将对我国马铃薯、番茄、胡萝卜等产业造成严重威胁。另外,由于马铃薯木虱和胡萝卜木虱自身对寄主的危害不大,检疫重要性未受到足够重视,在检疫过程中容易忽视其作为传播介体的风险,因此,口岸检疫中应加强来自疫区的植物产品中传病昆虫介体的重视。
参考文献
[1] Munyaneza J E, Crosslin J M, Upton J E.Association of Bactericera cockerelli (Homoptera: Psyllidae) with zebra chip, a new potato disease in southwestern United States and Mexico [J]. Journal of Economic Entomology, 2007, 100(3): 656663.
[2] AlfaroFernándezm A, Cebrián M C, Villaescusa F J, et al. First report of ‘Candidatus Liberibacter solanacearum’ in carrot in mainland Spain [J]. Plant Disease, 2012, 96(4): 582.
[3] Munyaneza J E.Zebra chip disease of potato: biology, epidemiology, and management [J]. American Journal of Potato Research,2012, 89(5): 329350.
[4] http:∥www.eppo.int/QUARANTINE/Alert_List/bacteria/Liberibacter_psyllaurous.htm
[5] Abad J A, Bandla M, FrenchMonar R D, et al. First report of the detection of ‘Candidatus Liberibacter’ species in zebra chip diseaseinfected potato plants in the United States[J]. Plant Disease, 2009, 93(1): 108109.
[6] Secor G A, Rivera V V, Abad J A, et al. Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR [J]. Plant Disease, 2009, 93(6): 574583.
[7] Crosslin J M, Olsen N, Nolte P.First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoesin Idaho [J]. Plant Disease, 2012, 96(3): 453.
[8] Munyaneza J E, Sengoda V G, Crosslin J M, et al. First report of ‘Candidatus Liberibacter psyllaurous’ in potato tubers with zebra chip disease in Mexico [J]. Plant Disease, 2009, 93(5): 552. [9] Liefting L W, Sutherland P W, Ward L I, et al. A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops [J]. Plant Disease, 2009, 93(3): 208214.
[10]Liefting L W, PerezEgusquiza Z C, Clover G R G, et al. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand [J]. Plant Disease, 2008, 92(10): 1474.
[11]Bextine B, Aguilar E, Rueda A R, et al. First report of Candidatus Liberibacter solanacearum on tomato in El Salvador[J]. Plant Disease, 2013, 97(9): 1245.
[12]Munyaneza J E, Fisher T W, Sengoda V G, et al. First report of “Candidatus Liberibacter solanacearum” associated with psyllidaffected carrots in Europe [J]. Plant Disease, 2010, 94(5): 639.
[13]田茜, 牟海青, 赵文军, 等. 一种引起茄科作物病害的病原:Candidatus Liberibacter solanacearum [J]. 植物检疫, 2012, 26(2): 3136.
[14]Munyaneza J E, Sengoda V G, Buchman J L, et al. Effects of temperature on ‘Candidatus Liberibacter solanacearum’and zebra chip potato disease symptom development [J]. Plant Disease, 2012, 96(1): 1823.
[15]Lin Hong, Lou Binghai, Glynn J M, et al. The complete genome sequence of “Candidatus Liberibacter solanacearum”, the bacterium associated with potato zebra chip disease[J]. PLoS ONE, 2011, 6(4): e19135.
[16]Munyaneza J E.Zebra chip disease, Candidatus Liberibacter, and potato psyllid: A global threat to the potato industry [J].American Journal of Potato Research, 2015, 92(2): 230235.
[17]Nelson W R, Fisher T W, Munyaneza J E.Haplotypes of “Candidatus Liberibacter solanacearum” suggest longstanding separation[J]. European Journal of Plant Pathology, 2011, 130(1): 512.
[18]Teresani G R, Bertolini E, AlfaroFernanndez A, et al. Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of realtime PCR method for its detection [J]. Phytopathology, 2014, 104(8): 804811.
[19]Nelson W R, Sengoda V G, AlfaroFernanndez A O, et al. A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region [J]. European Journal of Plant Pathology, 2013, 135(4): 633639.
[20]Tahzima R, Maes M, Achbani E H, et al. First report of ‘Candidatus Liberibacter solanacearum’ on carrot in Africa[J]. Plant Disease, 2014, 98(10): 1426.
[21]Cooper W R, Sengoda V G, Munyaneza J E.Localization of ‘Candidatus Liberibacter solanacearum’ (Rhizobiales: Rhizobiaceae) in Bactericera cockerelli (Hemiptera: Triozidae)[J]. Annals of the Entomological Society of America, 2014, 107(1): 204210. [22]Sengoda V G, Buchman J L, Henne D C, et al. Candidatus Liberibacter solanacearum titer over time in the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae), following acquisition from infected potato and tomato plants [J]. Journal of Economic Entomology, 2013, 106(5): 19641972.
[23]Sandanayaka W R M, Moreno A, Tooman L K, et al. Stylet penetration activities linked to the acquisition and inoculation of Candidatus Liberibacter solanacearum by its vector tomato potato psyllid[J]. Entomologia Experimentalis et Applicata, 2014, 151(2): 170181.
[24]Buchman J L, Fisher T W, Sengoda V G, et al. Zebra chip progression: from inoculation of potato plants with liberibacter to development of disease symptoms in tubers[J]. American Journal of Potato Research, 2012, 89(2): 159168.
[25]Munyaneza J E, Fisher T W, Sengoda V G, et al. Association of “Candidatus Liberibacter solanacearum” with the psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe [J]. Journal of Economic Entomology, 2010, 103(4): 10601070.
[26]Bertolini E, Teresani G R, Loiseau M, et al. Transmission of ‘Candidatus Liberibacter solanacearum’ in carrot seeds[J]. Plant Pathology, 2015, 64(2): 276285.
[27]Wen A, Mallik I, Alvarado V Y, et al. Detection, distribution, and genetic variability of ‘Candidatus Liberibacter’ species associated with zebra chip complex disease of potato in North America[J]. Plant Disease, 2009, 93(11): 11021115.
[28]Hansen A K, Trumble J T, Stouthamer R, et al. A new huanglongbing species, ‘Candidatus Liberibacter psyllaurous’ found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc)[J]. Applied and Environmental Microbiology, 2008, 74(18): 58625865.
[29]Li Wenbin, Abad J A, FrenchMonar R D, et al. Multiplex realtime PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip[J]. Journal of Microbiological Methods, 2009, 78(1): 5965.
[30]Ravindran A, Levy J, Pierson E, et al. Development of primers for improved PCR detection of the potato zebra chip pathogen, ‘Candidatus Liberibacter solanacearum’[J]. Plant Disease, 2011, 95(12): 15421546.
[31]Liefting L W, Veerakone S, Ward L I, et al. First report of ‘Candidatus Phytoplasma australiense’ in potato[J]. Plant Disease, 2009, 93(9): 969.
[32]Henne D C, Workneh F, Wen A, et al. Characterization and epidemiological significance of potato plants grown from seed tubers affected by zebra chip disease [J]. Plant Disease, 2010, 94(6): 659665.
[33]Butler C D, Trumble J T.Spatial dispersion and binomial sequential sampling for the potato psyllid (Hemiptera: Triozidae) on potato [J]. Pest Management Science, 2012, 68(6): 865869.
[34]Gharalari A H, Nansen C, Lawson D S, et al. Knockdown mortality, repellency, and residual effects of insecticides for control of adult Bactericera cockerelli (Hemiptera: Psyllidae)[J]. Journal of Economic Entomology, 2009, 102(3): 10321038.
[35]Pitman A R, Drayton G M, Kraberger S J, et al. Tuber transmission of ‘Candidatus Liberibacter solanacearum’ and its association with zebra chip on potato in New Zealand [J]. European Journal of Plant Pathology, 2011, 129(3): 389398.
[36]王茹琳, 高晓清, 姜淦, 等. 茄科作物新病原Candidatus Liberibacter solanacearum入侵我国的风险分析[J]. 江西农业学报, 2015, 27(1): 4246.
[37]罗其友, 刘洋, 高明杰, 等. 中国马铃薯产业现状与前景[J]. 农业展望, 2015 (3): 3540.
(责任编辑:田 喆)