论文部分内容阅读
本文以HMM(隐马尔可夫模型)为基础研究孤立字的汉语语音识别。孤立字的汉语语音样本首先经过人工切分去除寂静段,然后进行分帧处理;对每一帧语音进行频域预加重和时域汉明窗加权处理后,提取该帧的39维的MFCC混合参数(Mel频率倒谱参数);把该字所有帧的MFCC混合参数作为该字HMM模型的观察序列对其进行训练。通过在小人群范围内对0-9这十个孤立数码语音的大量实验,得到了很好的识别效果。