论文部分内容阅读
目的筛选原发性高血压并发冠心病发病的危险因素并建立个体风险分类模型,为疾病诊断提供计算机辅助方法。方法收集重庆医科大学医疗大数据平台中2014年1月1日-2019年5月31日确诊的2791例原发性高血压并发冠心病患者及2135例单纯原发性高血压患者的70项临床信息资料,筛选出单因素分析有统计学意义的指标,采用R3.6.1分别构建logistic回归分类模型及BP神经网络、随机森林、极限梯度上升(XGBoost)3种机器学习模型,比较各种模型的相关参数,选择最优的分类模型。结果单因素分析筛选出有统计学意义的