论文部分内容阅读
为提高复杂场景下的显著性目标检测速度和精度,提出了一种基于深度强化学习的两阶段显著性目标检测方法。该算法由显著性区域定位网络(salient region localization network, SRLN)和显著性目标分割网络(salient object segmentation network, SOSN)组成,分别对应显著性区域定位阶段和显著性目标分割阶段。在显著性区域定位阶段,首次提出采用深度强化学习训练智能体通过执行序列动作逐步定位显著性区域。再将其交由分割网络进行第二阶段的精细目标分