Stability switches and Bogdanov-Takens bifurcation in an inertial two-neuron coupling system with mu

来源 :Science China(Technological Sciences) | 被引量 : 0次 | 上传用户:zj280078064
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this paper,we investigate an inertial two-neural coupling system with multiple delays.We analyze the number of equilibrium points and demonstrate the corresponding pitchfork bifurcation.Results show that the system has a unique equilibrium as well as three equilibria for different values of coupling weights.The local asymptotic stability of the equilibrium point is studied using the corresponding characteristic equation.We find that multiple delays can induce the system to exhibit stable switching between the resting state and periodic motion.Stability regions with delay-dependence are exhibited in the parameter plane of the time delays employing the Hopf bifurcation curves.To obtain the global perspective of the system dynamics,stability and periodic activity involving multiple equilibria are investigated by analyzing the intersection points of the pitchfork and Hopf bifurcation curves,called the Bogdanov-Takens(BT)bifurcation.The homoclinic bifurcation and the fold bifurcation of limit cycle are obtained using the BT theoretical results of the third-order normal form.Finally,numerical simulations are provided to support the theoretical analyses. In this paper, we investigate an inertial two-neural coupling system with multiple delays. We analyze the number of equilibrium points and demonstrate the corresponding pitchfork bifurcation. Results show that the system has a unique equilibrium as well as three equilibria for different values ​​of coupling weights.The local asymptotic stability of the equilibrium point is studied using the corresponding characteristic equation. We find that multiple delays can induce the system to exhibit stable switching between the resting state and periodic motion .tability regions with delay-dependence are exhibited in the parameter plane of the time employs employing the Hopf bifurcation curves. To obtain the global perspective of the system dynamics, stability and periodic activity involving multiple equilibria are investigated by analyzing the intersection points of the pitchfork and Hopf bifurcation curves, called the Bogdanov-Takens (BT ) bifurcation.The homoclinic bifurcation and the fold bifurcation of limit cycle are obtained using the BT theoretical results of the third-order normal form. Finaally, numerical simulations are provided to support the theoretical analyzes.
其他文献
“稀缺资料地区水文预报”作为国际水文科学界广泛关注的焦点和难点,其准确性直接关系到防洪、抗旱和水资源管理以及水利工程规划与设计。探索稀缺资料地区径流估算方法,为稀缺
期刊
期刊
在现代化城市发展中,尤其在经济高度发达的地区的城市中,生态失衡现象已非常明显,野生动物的消失也与人类活动的过度掠夺开发以及不文明的生活作风密不可分。由于野生动物在城市
由喀斯特(KARST)作用所造成的地貌,称喀斯特地貌,即岩溶地貌。我国岩溶地貌分布面积广,石漠化程度严重。而石漠化是水土流失的结果,所以迫切需要对当地进行水土流失的治理,也就需
周宏兴教授与书法艺术结缘70年,其隶书大气磅礴,近年来研创的隶体指书更是以指写心,美轮美奂,被专家誉为“中国隶体指书第一人”周宏兴1936年2月18日出生于吉林省大安市;1949
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
在竞争日趋激烈的当今社会中,各行各业都在进行改革创新,其中最具代表力的则是报社编辑的策划活动,编辑策划是报社创意的集中表现,是编辑活动中较为新颖的一种形式,因此,不断