论文部分内容阅读
Real-life events are emerging and evolving in social and news streams.Recent methods have succeeded in capturing designed features of monolingual events,but lack of interpretability and multi-lingual considerations.To this end,we propose a multi-lingual event mining model,namely MLEM,to automatically detect events and generate evolution graph in multilingual hybrid-length text streams including English,Chinese,French,German,Russian and Japanese.Specially,we merge the same entities and similar phrases and present multiple similarity measures by incremental word2vec model.We propose an 8-tuple to describe event for correlation analysis and evolution graph generation.We evaluate the MLEM model using a massive humangenerated dataset containing real world events.Experimental results show that our new model MLEM outperforms the baseline method both in efficiency and effectiveness.