基于特征点的图像拼接方法

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:mfdbuxing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出了一种基于特征点匹配的全景图像拼接方法.该方法首先利用sift算法提取各图像中的特征点并利用Harris算法对图像特征点提取进行了优化,然后采用基于K-d树的BBF算法查找和确定初始匹配点对,完成特征点的粗匹配,再根据图像配准结果使用稳健的RANSAC算法对粗匹配的特征点进行筛选,计算出图像间变换矩阵H,最后采用渐入渐出的加权平均的融合算法对两幅图像进行无缝拼接,形成一幅完整的全景画面.实验结果验证了该方法的有效性,拼接效果较好.
其他文献
传统的K-means算法虽然具有很多优点,但聚类准则函数对簇密度不均的数据集分类效果较差.文中在加权标准差准则函数的基础之上,增加了收敛性判定,并在Hadoop平台上提出了一种
为了充分利用企业分布在不同系统的基础设施,保护企业的核心数据,提供一个统一的安全的运行接口和运行环境,避免为每个系统重新部署、设计的重复繁杂工作,一个较好的解决方案
针对TB级的大规模金融对账文件的近似比对问题,本文深入分析了金融对账文件的特点,以提升比对速度作为研究目标,提出了一种多层次的近似比对模型—Up Compare模型.Up Compare
银行故障单中故障的截图常存在与自然场景中,能够在该图中精确地进行文本检测,将可以提高文本识别的精确度,并提高案例库的搜索和主动运维能力.为了提高自然场景文本检测的效率,提出了一种基于深度学习的自然场景文本检测算法.算法首先提取出图像中的最大稳定极值区域作为候选字母,利用单链接层次聚类得到候选文本,对候选文本进行中值滤波,最后通过一个深度置信网络DBN来删除非文本候选.实验结果表明,基于DBN的方法
传感器节点在森林、水下等复杂环境下进行数据采集时,由于信号强度与信号传输速度受到障碍物或传输介质的干扰,影响了基于信号信息的定位算法的测量精度.同时考虑到节点的成
为了实现森林火灾的智能化预警,提出了基于颜色和纹理特征的林火烟雾识别方法.首先使用颜色特征确定烟雾疑似区域,随后采用局部二值模式方差(Local Binary Pattern Variance,L
波达方向(DOA)估计在无线传感器网络中得到了广泛的应用,本文针对DOA中加权子空间拟合(WSF)算法多维非线性优化计算量大的问题,提出一种限定遗传搜索空间的WSF求解算法.该方法将
对电网供电系统短期电力负荷预测模型进行优化,能提升预测结果的准确性和鲁棒性.虽然现有预测模型可以满足预测速度的要求,但预测结果的精确性和稳定性却无法保证.为了得到更
相似度计算是基于用户的协同过滤算法中的一个关键步骤,随着用户数的增加,相似度的计算空间会越来越庞大,同时在将其运用到农资领域个性化推荐时准确度较低.针对这些问题,结
为了更准确有效的识别人群恐慌行为,本文提出了一种利用视频中人群运动矢量的交点密集度来判断人群恐慌异常的新算法.该算法以LK光流法为基础来提取运动人群的运动矢量信息,接着通过获得的信息求取运动矢量间的两两交叉点,然后运用分块法求得区域交叉点密集度,并以此来识别人群异常.对多个视频进行测试,测试结果表明:该算法能够以较高正确率识别视频中人群的恐慌行为.