论文部分内容阅读
针对文本识别中存在的光照不均匀、字符质量低等问题,提出一种图像增强算法和卷积循环神经网络字符识别模型。图像增强算法使用考虑局部信息的改进色调映射函数增加暗区域文字的可见度。通过背景估计和对比度补偿的方法解决图像光照不均匀问题,使用连通域的方法对图像中的文字定位。基于文字区域搭建卷积和循环深度神经网络模型,以图像内整个字符串作为识别目标。采集30幅光照不均匀图像进行实验验证,结果表明该模型在该场景下的文字识别准确率为98.29%。