论文部分内容阅读
Boosting是一种有效的分类器组合方法,它能够提高不稳定学习算法的分类性能,但对稳定的学习算法效果不明显.BAN(BN augmented Naive-Bayes)是一种增强的贝叶斯网络分类器,通过Boosting很容易提高其分类性能.比较了GBN(general BN)和BAN的打包分类器Wrapping-BAN-GBN与基于Boosting的BAN组合分类器Boosting-BAN.最后通过实验结果显示了在大多数实验数据上,BoostingBAN分类器显示出较高的分类正确率.