论文部分内容阅读
血管内超声(IVUS)图像的冠状动脉血管壁内、外膜边缘提取对冠脉疾病的诊断和治疗有着重要意义。针对实际IVUS图像血液斑点噪声比较严重的情况,提出一种基于超声序列图像斑点噪声抑制和活动轮廓模型(Snake模型)的IVUS图像边缘提取方法。首先采用一种时/空滤波方法对IVUS图像进行降噪预处理,该方法能够有效地抑制IVUS图像的血液斑点噪声;然后基于Snake模型和图像的统计特征自动提取冠脉血管壁内、外膜边缘。实验结果表明,本算法简单,准确性较高,对序列图像处理的可重复性和鲁棒性较强,是一种较好的全局