论文部分内容阅读
雅可比迭代法是求解大型线性方程组的基本方法。利用GPU(Graphics Processing Unit,图形处理器)的并行处理能力,将雅可比迭代求解线性方程组过程中运算量较大的部分移植到GPU上执行,以提高运算速度。并分析了影响运算速度的两个因素:CPU-GPU数据交换和共享变量的访问;实验结果表明采用单个thread访问共享变量判断迭代是否收敛时,线性方程组的阶数为500,速度可以提高45倍以上。