第一人称视角下的社会力优化多行人跟踪

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:lanbour156
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的多行人跟踪一直是计算机视觉领域最具挑战性的任务之一,然而受相机移动、行人频繁遮挡和碰撞影响导致第一人称视频中行人跟踪存在效率和精度不高的问题。对此,本文提出一种基于社会力模型优化的第一人称视角下的多行人跟踪算法。方法采用基于目标检测的跟踪算法,将跟踪问题简化为检测到的目标匹配问题,并且在初步跟踪之后进行社会力优化,有效解决频繁遮挡和碰撞行为导致的错误跟踪问题。首先,采用特征提取策略和宽高比重新设置的单步多框检测器(single shot multi-box detector,SSD),对输入的第
其他文献
目的视频质量评价是视频技术研究的关键之一。水下环境比其他自然环境更加复杂,自然光在深水中被完全吸收,拍摄所用的人工光源在水中传播时会发生光吸收、色散和散射等情况,同时受水体浑浊度和拍摄设备等影响,导致水下视频具有高度的空间弱可视性和时间不稳定性,常规视频质量评价方法无法对水下视频进行准确、有效的评价。本文考虑水下视频特性,提出一种适用小样本的结合空域统计特性与编码的水下视频质量评价方法。方法基于水
目的织物识别是提高纺织业竞争力的重要计算机辅助技术。与通用图像相比,织物图像通常只在纹理和形状特征方面呈现细微差异。目前常见的织物识别算法仅考虑图像特征,未结合织物面料的视觉和触觉特征,不能反映出织物本身面料属性,导致识别准确率较低。本文以常见服用织物为例,针对目前常见织物面料识别准确率不高的问题,提出一种结合面料属性和触觉感测的织物图像识别算法。方法针对输入的织物样本,建立织物图像的几何测量方法
目的模糊车牌识别是车牌识别领域的难题,针对模糊车牌图像收集困难、车牌识别算法模型太大、不适用于移动或嵌入式设备等不足,本文提出了一种轻量级的模糊车牌识别方法,使用深度卷积生成对抗网络生成模糊车牌图像,用于解决现实场景中模糊车牌难以收集的问题,在提升算法识别准确性的同时提升了部署泛化能力。方法该算法主要包含两部分,即基于优化卷积生成对抗网络的模糊车牌图像生成和基于深度可分离卷积网络与双向长短时记忆(
目的为解决实时车辆驾驶中因物体遮挡、光照变化和阴影干扰等多场景环境影响造成的车道线检测实时性和准确性不佳的问题,提出一种引入辅助损失的车道线检测模型。方法该模型改进了有效的残差分解网络(effcient residual factorized network,ERFNet),在ERFNet的编码器之后加入车道预测分支和辅助训练分支,使得解码阶段与车道预测分支、辅助训练分支并列,并且在辅助训练分支的