论文部分内容阅读
目标跟踪是计算机视觉领域重要研究方向之一。压缩感知跟踪速度快、精度高,但是跟踪被遮挡目标时使用被遮挡的哈尔特征构建分类器,导致分类器性能降低,目标容易丢失。为了解决该问题,提出了根据l1稀疏表示判断哈尔特征是否被遮挡,然后使用未被遮挡的特征构建贝叶斯分类器。首先对每一帧跟踪结果运用稀疏表示提取出未被遮挡特征的集合,在构建贝叶斯分类器时仅使用未被遮挡的特征。然后使用训练好的分类器对下一帧候选样本进行分类,选取具有最大分类响应的候选样本作为跟踪结果。实验结果表明,该算法在跟踪目标部分遮挡时相比CT算法有