HPLC法同时测定咖啡酸片的主药和有关物质含量

来源 :中国药房 | 被引量 : 0次 | 上传用户:zhuqs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的:建立同时测定咖啡酸片中主药和有关物质含量的方法。方法:采用高效液相色谱法。色谱柱为Diamosil C18,流动相为甲醇-0.15%磷酸二氢钠缓冲液用磷酸调节pH值至4.0)=23∶77,流速为1.0 mL·min-1,检测波长为323 nm。结果:咖啡酸检测浓度线性范围为5.038~100.76 μg·mL-1(r=0.999 7);平均回收率为99.04%,RSD=0.17%(n=9);有关物质各杂质与主峰之间的分离度良好,检测限和定量限分别为16.7、85.3 ng·mL-1。结论:本法简便、准确、专属性好、灵敏度高,可有效控制咖啡酸片的质量。 Objective: To establish a method for simultaneous determination of the main drug and related substances in caffeic acid tablets. Methods: Using high performance liquid chromatography. The column was Diamosil C18, the mobile phase was methanol-0.15% sodium dihydrogen phosphate buffer, and the pH value was adjusted to 4.0 with phosphoric acid (pH = 4.0) = 23:77, the flow rate was 1.0 mL · min-1 and the detection wavelength was 323 nm. Results: The linear range of caffeic acid was 5.038-100.76 μg · mL-1 (r = 0.999 7). The average recovery was 99.04%, RSD was 0.17% (n = 9) The resolution was good, with the limits of detection of 16.7 and 85.3 ng · mL-1, respectively. Conclusion: This method is simple, accurate, specific, and high sensitivity, which can effectively control the quality of caffeic acid tablets.
其他文献
主动学习是机器学习领域的重要研究方向。现有主动学习方法通常选择不确定性的或具有代表性的样本供专家打标,然后添加到已标记的数据集中供分类器学习,但没能充分利用数据的分布信息,并且在野点采集问题上有待改进。结合邻域粗糙集理论,提出了一种基于邻域粗糙集的主动学习方法(neighhbor rough set active learning,NRS-AL)。实验结果表明,在加州大学数据集(universit
【正】 有人曾讲,没有女性便没有文学。这可能有点夸张。著名女作家冰心说:“世界上若没有女人,这世界至少要失去十分之五的‘真’,十分之六的‘善’,十分之七的‘美’。”女