论文部分内容阅读
为了准确识别人的身份,该文提出了一种以轮廓波(Contourlet)变换后不同尺度下的子带能量为特征,建立并融合多个隐马尔科夫模型(HMM)的手背静脉识别算法。该算法首先采用了光强可调的近红外阵列光源,通过逐步增加光强来获得手背静脉图像序列;而后,将每一静脉图像进行Contourlet变换,并计算不同尺度下每一子带的能量,以3个尺度下子带能量作为特征观测值建立3个HMM;最后,融合3个HMM计算得到的观测值发生概率,将融合结果与阈值作比较,从而完成静脉识别过程。实验结果表明,提出的算法可以使真实匹配