论文部分内容阅读
应用神经网络的强大学习能力和具有全局最优的BP改进算法,提出了通过训练学习建立的具 有混沌性态的优化神经网络模型;利用网络权值调整的灵活性来产生混沌序列,该模型序列更换容易并且数 量巨大。实验与分析结果表明该模型产生的混沌扩频序列具有良好的相关特性、平衡特性以及理想的线性复 杂度,是最优加密密钥及扩频码的优选码型之一。