论文部分内容阅读
目 的:明确地塞米松可以减少重症急性胰腺炎(SAP)引起的肿瘤坏死因子(TNF-α)的释放,减轻TNF-α导致的肾脏血管内皮糖萼的降解,从而改善肾脏微循环和缓解肾损伤.创新点:本研究通过小鼠活体研究的方法,建立小鼠重症急性胰腺炎模型,并用地塞米松进行干预对照,采用透射电镜、激光多谱勒和酶联免疫的方法,检测了各组小鼠肾脏血管内皮糖萼的完整性、肾血流灌注和TNF-α表达情况,阐明了地塞米松对内皮糖萼的保护作用.方 法:通过“胰管结扎+腹腔内雨蛙素注射”的方法建立SAP模型,分别留取各组小鼠的血液和组织标本,采用透射电镜观察内皮糖萼的损伤情况,用酶联免疫检测血清 TNF-α 和糖萼成份多配体聚糖的浓度,并用激光多谱勒检测活体小鼠肾脏的灌注,分析地塞米松对内皮糖萼的保护和改善肾脏灌注的作用.结 论:SAP可以引起TNF-α的大量释放,并导致内皮糖萼的降解和肾脏灌注下降,而地塞米松可以减少TNF-α的释放,减轻糖萼的降解,改善肾脏血流灌注.“,”Objective: This study demonstrated that dexamethasone (DEX) protects the endothelial glycocalyx from damage induced by the inflammatory stimulus tumor necrosis factor-α (TNF-α) during severe acute pancreatitis (SAP), and improves the renal microcirculation. Methods: Ninety mice were evenly divided into 3 groups (Sham, SAP, and SAP+DEX). The SAP mice model was established by ligature of pancreatic duct and intraperitoneal injection of ce-rulein. Renal perfusion and function, and morphological changes of the glycocalyx were evaluated by laser Doppler velocimetry, electron microscopy, and histopathology (hematoxylin and eosin (H&E) staining), respectively. Serum levels of syndecan-1 and TNF-α were assessed by enzyme-linked immunosorbent assay (ELISA). The protective effects of dexamethasone on the glycocalyx and renal microcirculation were evaluated. Results: Significantly high levels of serum TNF-α were detected 3 h after the onset of SAP. These levels might induce degradation of the gly-cocalyx and kidney hypoperfusion, resulting in kidney microcirculation dysfunction. The application of dexamethasone reduced the degradation of the glycocalyx and improved perfusion of kidney. Conclusions: Dexamethasone protects the endothelial glycocalyx from inflammatory degradation possibly initiated by TNF-α during SAP. This is might be a significant discovery that helps to prevent tissue edema and hypoperfusion in the future.