论文部分内容阅读
基于模糊商空间的模糊C-均值算法(QFCM)是在模糊商空间和模糊模糊C-均值(FCM)的基础上提出的。通过引入相似函数并构造出归一化距离,得到模糊商空间的分层递阶的结构,在此基础上提出了基于粒度思想的准则函数并选择出一个最佳层次,从而确定聚类的个数,并选择具有相似度高的样本作为初始聚类中心,结合鲁棒性统计观点运用归一化距离来替代FCM目标函数中的欧式距离度量,提出了QFCM算法。实验证明与传统的算法比较,QFCM算法能够自动确定最佳聚类数目,发现大小不均的聚类,迭代次数少,有效地消除了传统FCM算法对初始