论文部分内容阅读
提升小波变换算法在图像去噪中有广泛的应用,但是对于海量数据流该算法计算速度缓慢无法达到实时性.为了提高计算速度,提出一种基于图形处理器(GPU)的并行计算策略,把传统提升小波变换算法映射到CUDA编程模型,利用具有大规模并行计算特征的GPU作为计算设备,结合GPU存储器的优势实现了基于滑动窗口的提升小波变换并行算法.实验的测试结果表明,在现有的实验条件下,随着图像的增加,提升小波变换并行算法可以把计算速度提高50倍,效率提高明显.本文提出的方法也可以用其他图像处理算法的并行化.