应用最大信息系数和支持向量机估测森林蓄积量

来源 :东北林业大学学报 | 被引量 : 0次 | 上传用户:cyuaxl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了探究Landsat8 OLI影像和支持向量机算法在林分蓄积量估测中的潜力,以湖南省株洲市为研究区,以Landsat8 OLI卫星影像为遥感数据源,并结合同时期的湖南省森林资源二类调查数据,提取单波段特征、植被指数和纹理特征等遥感因子作为候选变量;利用最大信息系数对遥感变量进行筛选,并构建基于多项式核的PK-SVR模型、基于径向基核的RK-SVR模型、基于拉普拉斯核的LK-SVR模型和基于Sigmoid核的SK-SVR模型;以决定系数、相对均方根误差作为预测模型的评价指标,并与传统的线性回归模型进行对比,同时对研究区的森林蓄积量进行反演,得到株洲市森林蓄积量空间分布图.结果表明:支持向量机(SVR)模型的预测结果明显优于多元线性回归模型,RK-SVR模型的预测效果最好,其决定系数为0.61、均方根误差为69.26 m3/hm-2、相对均方根误差为31.2%.
其他文献
以锡林郭勒草原为研究区,应用谷歌地球引擎(GEE)云计算平台、哨兵2号卫星(Sentinel-2)遥感数据及其他辅助数据,选择随机森林(RF)、支持向量机(SVM)、多层感知器(MLP)模型3种机器学习算法,对土壤表层(0~20 cm)30 m分辨率的土壤有机碳(SOC)和土壤总氮(STN)质量分数进行估算,比较不同方法的精度差异,分析各影响因素的重要性.结果表明:①3种机器学习算法中,随机森林模型对土壤有机碳、土壤总氮估测效果最佳(土壤总氮模型,决定系数为0.67、均方根误差为0.024、百分比偏差为2
1 PMC的定义与发展现状rn近年来由于大型项目向建设规模大型化、建设内容高新化、设备装置多层次化方向发展,项目法人仅仅靠自己的力量难以保质保量地完成工程项目的建设;因此往往通过选择有实力、有信誉、有资质的公司或单位(如大型设计研究院),实行PMC模式来加强工程的管理.这反映了市场专业化分工的必然趋势和投资方规避风险的客观要求,是一种国际通行的工程建设项目组织实施方式,是工程项目管理的主要管理方式之一.
期刊