论文部分内容阅读
提出了一种基于微粒群优化(PSO)的T-S模糊模型的非线性系统辨识方法,并用于船舶柴油机的动态建模.该辨识方法采用GK模糊聚类算法确定模糊模型的前件结构及参数,利用PSO算法来辨识模糊模型的结论参数.利用6160-A11船舶柴油机模型,获得柴油机各主要参数在油门尺度和负载发生小偏差扰动时的试验数据,再利用该组数据辨识出柴油机转速、涡轮增压器转速、增压压力、空冷器压力、进气管压力、排气管压力等参数的T—s模糊动态模型.仿真结果表明了该方法的有效性.