论文部分内容阅读
随着物联网和5G技术的快速发展,以深度学习为基础的人工智能应用越来越多,使基于时空数据的医疗影像、城市安防、自动驾驶等视觉领域成为物联网方向的研究热点。物联网系统采集到的视频数据、图片数据、温湿度与气体浓度数据同时也急剧增长,最终使得物联网系统的处理速度和反馈速度越来越慢。针对物联网节点采集的时空数据量大且可能存在短暂性异常的问题,文中设计了基于长短记忆网络的EPLSN(Exception Processing Long and Short Memory Network)算法。首先,对输入门的逻辑结