论文部分内容阅读
【目的】应用浅层结构的机器学习分类器和高空间分辨率影像实现休耕区绿肥、粮食及经济作物快速准确分类。【方法】利用分辨率为5 m的RapidEye影像,以云南省石林县部分休耕试点区为研究区,使用Softmax浅层机器学习分类器对研究区内绿肥作物、水稻、玉米及烟草等4种典型作物进行遥感识别与空间信息提取,并以极大似然分类法为参照,通过地面样方数据验证该方法的精度。【结果】基于Softmax方法的4种典型作物分类的总体精度和Kappa系数分别为85.98%和0.815 7,比极大似然分类高4.59%和0.0