论文部分内容阅读
Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif,central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean continental collision. New 1 : 10 000 scale structural mapping, combined with detailed petrological analysis in this area, has enabled us to accurately distinguish structures related to the Triassic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit. The collisional or compressional structures include the massive eclogite with a weak foliation, foliated eelogite or UHP ductile shear zones, us well as upper amphibolite facies shear zones, whereas the post-coliisional deformation is characterized by a regionally, fiat-lying foliation containing stretching lineations and common reclined folds. The former is present exclusively in the eclogite lenses and their margins, representing orogenic thickening or syn-collisional events, while the latter was best occurred on variable scales under amphibolite facies conditions, showing sub-vertical, extreme shortening and ductile thinning of the metamorphic rock stack. The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common. It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was, at least partly, responsible for exhumation of the UHP metamorphic rocks in the Dabie massif. A new tectonic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif. The Bixiling area thus provides a window, from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed. Regional studies in the Dabie Mountains have confirmed this interpretation.