论文部分内容阅读
本文从 GaAs 体晶体的补偿比计算得的 D·V_(Ga)(杂质-镓空位)浓度,来估计 n 型掺杂晶体的“掺杂效应”(通过掺杂降低晶体位错密度)。综合分析已发表的及本所的掺 Si、S、Se、Te 和Sn 晶体的实验数据,结果表明,掺杂效应的有效性与 D·V_(Ga)浓度有关。各种杂质形成的 D·V_(Ga)对位错密度的影响大致相同,位错密度随 D·V_(Ga)的增加而下降,当浓度约达1.5×10~(18)厘米~(-3)(对 Si 为折合后可比的浓度)左右时,可以长成无位错单晶。晶体位错密度与 D·V_(Ga)之间具有如下一般的关系:EPD=A-m〔D·V_(Ga)〕~(1/4) (A、m 为常数)。D·V_(Ga)降低位错的作用可能是它与位错相互作用增强晶体屈服应力所致。此外,从杂质与缺陷相互作用的观点,简单地讨论了 Al,N 和 Zn 的掺杂效应。
In this paper, the “doping effect” of n-type doped crystals (reducing the dislocation density through doping) is estimated from the concentration of D · V_ (Ga) (impurity-gallium vacancy) calculated from the compensation ratio of GaAs bulk crystals. A comprehensive analysis of published and experimental data of the doped Si, S, Se, Te and Sn crystals shows that the doping effect is related to the concentration of D · V_ (Ga). The influence of D · V_ (Ga) formed by various impurities on the dislocation density is approximately the same, and the dislocation density decreases with the increase of D · V_ (Ga). When the concentration is about 1.5 × 10 ~ (18) cm ~ 3) (Si is comparable to the concentration after folding) around, you can grow into a single crystal without dislocation. The crystal dislocation density has the following general relationship with D · V_ (Ga): EPD = A-m [D · V_ (Ga)] ~ (1/4) (A and m are constants). The role of D · V_ (Ga) in reducing dislocation may be that it interacts with the dislocations to enhance the crystal's yield stress. In addition, the doping effects of Al, N and Zn are simply discussed from the point of view of the interaction between impurities and defects.