论文部分内容阅读
为了解决传统基于卡尔曼滤波算法进行艺术体操轨迹跟踪时存在的跟踪漂移以及跟踪效率低等问题,研究基于计算机视觉的艺术体操轨迹跟踪方法,通过ViBe运动目标检索算法对图像的颜色以及深度信息建模,基于图像颜色以及深度的波动检测出视频中的运动目标,采用KCF算法实现运动目标的初步跟踪,在该方法的基础上,通过改进KCF算法解决运动目标被遮挡出现的跟踪漂移问题,提高运动目标跟踪的精度和稳定性。通过Hermite插值运算运动目标质心,基于时刻t的运动模糊方向获取瞬时质心轨迹,得到最佳的运动目标质心轨迹,采用曲线拟合措施获