Vine Copula在GCMs多模式降雨集成中的应用

来源 :武汉大学学报(工学版) | 被引量 : 0次 | 上传用户:Ningyuan321
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
全球气候模式(global climate models,GCMs)数量众多,各有优劣,对降水量而言往往难以确定出一个最优模式,所以当将其输出用于水文长期预估时,通常需对各模式数据进行集成,以发挥不同模式的优势,提升水文预估的整体精度.采用Vine Copula构建GCMs与实测降雨的多维联合分布函数,并推求给定GCMs数据条件下实测降雨量的条件分布,再由该条件分布实现多维数据的综合.以淮河王家坝以上流域6个GCMs降雨数据的综合为例进行应用研究,并与贝叶斯模型平均和多元分位数回归2种多变量集成方法进行比较.结果表明,基于Vine Copula的多模式集成结果优于任意原始单模式,且具有整体最优的集成效果,为GCMs在水文中的应用提供了一种途径.
其他文献
基于耦合模式比较计划第6阶段(the coupled model intercomparison program in phase 6,CMIP6)的全球气候模式模拟数据,评估分析了全球气候模式对中国主要地区1979-2014年极