论文部分内容阅读
数学理解不仅是指对数学知识、技能、思想方法的掌握,也指领会数学的社会价值。数学理解具有层次性,例如:Pirie.S和Kieren.T提出的超回归数学理解模型将数学理解划分为8个不同水平,即:原始认识、产生表象、形成表象、性质认知、形成化、观察评述、构造化、发明创造。数学教育就是不断地提高学生的数学素养,也就是不断地提高学生的数学理解水平。下面以《直线与抛物线交点问题》为例说
Mathematical understanding not only refers to the mastery of mathematical knowledge, skills, ideas and methods, but also refers to the understanding of the social value of mathematics. Mathematical comprehension is hierarchical. For example, the mathematical model of hyper regression regression proposed by Pirie.S and KierenT divides mathematical understanding into eight levels, namely, original cognition, appearance, appearance, nature recognition, formation, Observations, constructions, inventions. Mathematics education is to constantly improve students ’mathematical literacy, that is, to continuously improve the level of students’ understanding of mathematics. The following “linear and parabolic intersection problem” as an example