论文部分内容阅读
探讨欠定情形(即观察信号的个数少于源信号个数)下的盲信号分离,提出一种新的方法,即时域检索平均法(SAMTD),该方法可解决目前在频域中难以处理的一类问题,它利用一类语音信号在时域中的稀疏持续性,回避像K均值聚类或势函数等常用统计聚类方法.为估计混叠矩阵,它剔除那些不与基矢量共向或反向的数据样本,以提高其估计的准确性.在源信号的恢复上,提出了一个超完备线性几何ICA改进算法.几个语音信号实验的仿真数据展示了所提方法的性能和实用性.