双向长短时记忆网络(BiLSTM)相关论文
针对人体活动传感器数据的时序性特点,以及当前机器学习算法过度依赖手工特征提取的问题,提出了一种融合卷积神经网络和双向长短期......
药用植物文本的命名实体识别对中医药领域的信息抽取和知识图谱构建起着重要作用.针对药用植物属性文本存在长序列语义稀疏的问题,......
为了解决渔业标准文本中专有命名实体具有上下文敏感性、长序列存在语义稀释等问题,提出了基于E-BIO标注法和融合注意力机制的BiLS......
植物属性文本的命名实体识别对林业领域的信息抽取和知识图谱的构建起着重要的作用,针对该问题,提出了一种基于双向长短时记忆网络......