论文部分内容阅读
我国农村地区主要以地下水为饮用水源,以分散式处理方式为主,而地下水中铁、锰、氨氮、致病微生物等威胁着当地的供水安全。常规水处理工艺在农村分散式供水应用中存在操作复杂、处理效能不稳定、运维量大等问题而难以在农村推广使用。结合超滤和除铁除锰滤池的工艺特性,以农村地区分散式水处理工艺的不足为问题导向,课题研发了重力流超滤技术(GDM),兼具操作简单、低能耗、低维护等工艺特性,并成功地应用于地下水除铁除锰除氨氮,全面探究了GDM系统的除铁除锰除氨氮效能,解析了铁锰污染条件下GDM系统的通量稳定机制,形成了GDM系统除铁锰快速启动策略。GDM系统对铁有高效地去除效果,启动初期,出水中铁含量即可达标,铁离子的去除主要以化学催化氧化为主,氧化形成的终产物(氢氧化铁)絮体被超滤膜截留而实现地下水中铁的高效分离,出水中铁含量低于0.1mg/L。此外,铁氧化物在膜表面的截留还有助于膜表面滤饼层的形成。随着过滤的进行,膜表面逐渐形成了具有高效锰催化氧化的活性滤饼层,出水锰含量显著降低(<0.1mg/L)。超滤膜的材质(PVDF和PES)对GDM系统除铁锰的启动过程无显著影响,而投加活性锰氧化物可显著地缩短GDM的启动周期(仅需35天出水锰浓度即可达标)。GDM系统可高效地去除水中的颗粒物、悬浮物和胶体,出水中浊度低于0.1 NTU;且对天然有机物的具有一定的去除作用(去除率约15%)。在水温约为6.8℃,溶解氧浓度约为8.5 mg/L的条件下,GDM系统稳定运行后,其对锰离子和氨氮的极限去除浓度分别为3.2 mg/L和0.85 mg/L。铁锰污染条件下,GDM系统长期运行的通量稳定性是制约该工艺可否成功应用于地下水除铁除锰的关键。结果表明长期运行,GDM系统出水通量可达到稳定,但出水通量达到稳定状态所需时间相对较长,稳定通量水平也略微有所降低。地下水中微生物的数量、无机颗粒数量较少,水的温度较低,生物滤饼层形成的时间相对较长,且结构较为致密。投加活性锰氧化物可显著增加GDM系统中滤饼层的粗糙度、多孔性和厚度,提升稳定通量水平。超滤膜的材质对GDM系统稳定通量水平也有一定的影响,PVDF材质GDM系统的稳定通量水平略高于PES材质GDM系统的稳定通量水平;GDM系统中膜表面滤饼层中EPS含量处于较低水平,其中多糖含量远高于蛋白含量,GDM系统膜表面滤饼层中ATP浓度越高,GDM系统稳定通量水平越高。此外,GDM系统中滤饼层的组成特性和菌群分析表明,滤饼层中不仅含有大量的铁锰氧化物,还存在着铁细菌、锰氧化菌和硝化细菌等微生物。铁锰的去除机理是化学氧化作用为主,生物氧化作用为辅;氨氮的去除机理以生物氧化为主,可能存在化学催化氧化作用。本研究将GDM系统可成功应用于地下水同步除铁、锰、氨氮、浊度等污染物,形成了GDM系统快速启动策略;揭示了铁锰污染条件下,GDM系统长期运行的通量稳定机制和膜污染特性,有助于发展和完善分散式地下水膜处理理论和技术体系。