真空光镊中微粒的动力学特性研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:yuanli1988
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
当高度聚焦的激光作用到物质上时,动量的传递促使物体受到来自非均匀光场的光力,从而可利用光力实现对物体的悬浮和旋转,优点是无接触操作。以往人们对光致旋转的研究大多在水和空气中进行,而本文则是在真空的背景中开展研究,在真空中,极低压强的环境能大大降低环境与物体的摩擦,同时避免外界环境的干扰,利用真空光镊中的圆偏振光束能驱使物体高速旋转。基于光源、粒子与真空环境这三个部分相互作用的复杂机制,论文分步研究了物体在平动方向的悬浮操作、在平衡点的旋转运动以及影响转速提升的相关因素。首先,利用紧聚焦高斯光束单光镊实现在真空中对微纳圆球和圆盘的抓捕,并使之呈悬浮态。根据动量守恒,只要物体偏离平衡点,会时刻受到朝向光焦点的回复力。通过分析数值模拟得到的光阱系统中粒子的电场、光力和势能曲线,确定合适的捕获参数,考虑粒子的形状、半径和折射率,还有光源的波长、数值孔径与偏振态等关键因素对光力的影响,实现对两种粒子的长时间稳定抓捕,为后续驱动粒子的稳定旋转打下基础。接着,在真空光镊系统中,用圆偏振高斯光束捕获微粒的同时,驱动圆盘微粒高速旋转并能控制其旋转方向。利用麦克斯韦应力张量法计算微粒处于平衡点时的光力矩,得知当光源方向沿z轴传播,微粒分布绕x轴和y轴的旋转时存在平衡点,而在z轴为恒定的数值。由此,物体绕z轴旋转的角速度由于受到恒定的光力矩而稳定增加,此时阻尼力矩也一直增大,直到与光力矩平衡,物体最终以恒定的旋转频率绕轴旋转。关于转向的控制,以左旋圆偏振光入射时,圆盘顺时针绕轴旋转,右旋圆偏振光则反之。同时,真空光镊中微粒的转速、转动姿态、转动方向以及是否稳定旋转都可以通过光力矩来确定。最后,为提高圆盘的旋转频率,结合数值模拟得到的光力以及阻尼系数等数据,讨论了椭圆偏振光的相位差、光源的数值孔径、真空环境中的压强、粒子的平动位置等因素对光力矩的影响。在真空环境下,利用圆偏振高斯光束驱动半径为300 nm、高度为50 nm的圆盘微粒以THz量级的频率绕轴旋转。综上,本论文实现了在真空中对纳米粒子的捕获和均匀旋转,并且讨论了如何提升转子的极限旋转频率,高速旋转不仅用于研究纳米离心力下对材料极限的测试和真空摩擦,也为光学陀螺仪灵敏度的提升提供了新思路。
其他文献
病毒感染寄主组织是通过其表面特定的蛋白与感染胞体外表的蛋白之间的互作来完成的,当寄主的组织被侵染后,病毒会使用寄主的化合物来完成基因组的复制、蛋白质的合成、新病毒颗粒的组装、释放等过程,所以预测病毒蛋白质-宿主蛋白质的互作关系对于揭示病毒感染寄主机制有重大意义。那么,如何预测病毒-宿主蛋白的相互作用是当前生物信息领域所面对的重大挑战。预测蛋白质之间相互作用的方法主要有生物学方法和计算学方法两种,传
受到自然界中存在着种类丰富的天然分子马达的启发,研究者通过模仿成功制备了人造胶体马达。化学驱动胶体马达能够利用其表面上不对称分布的催化剂在胶体马达周围构建不对称场驱动胶体马达运动,其中气泡驱动机理是化学驱动马达中最典型的驱动机制。气泡驱动具有高效的能量利用效率,受溶液中电解质影响较小等优点,因此在生物医学、环境治理、检测等领域有着广泛的应用前景。目前,对可批量制备的、尺寸较小的气泡驱动空腔结构胶体
近年来,随着生物数学的发展,捕食者-食饵模型的动力学性质已经成为众多学者关注的问题。在捕食者-食饵模型中引入适当的功能反应函数、时滞、扩散以及非局部竞争项等可以更好地描述种群的动力学行为。本文将讨论一类具Holling-Ⅲ型功能反应的捕食者-食饵模型,分别研究不具非局部竞争项和具非局部竞争项模型的动力学性质。一方面,分析不具非局部竞争项捕食者-食饵模型的动力学性质。首先,讨论不带时滞和扩散模型的平
细菌在自然界中扮演者十分重要的角色,它维系着各种平衡,而在人体内诸如肠道、皮肤等器官中细菌的存在更是帮助我们完成各种生理生化功能,帮助我们完成仅靠我们自己无法完成的事。而另一方面,细菌中的一类致病菌也会引起我们的疾病,即使抗生素的出现对抗了这类致病菌的致病能力,但随着细菌耐药性的出现,抗生素效果也会大打折扣。因此一种天然的对抗细菌的生物——噬菌体,就逐渐出现在人们的视野中,通过对噬菌体的改造,可以
编码组蛋白赖氨酸去甲基化酶的基因KDM5D是位于于哺乳动物Y染色体上,它能够编码具有Jmj C结构域的组蛋白去甲基化酶。此外,KDM5D能够特异性作用于H3K4me2及H3K4me3的甲基残基。国内外研究发现KDM5D基因与胚胎发育,神经性疾病,肿瘤发生均有密切联系。KDM5D在人的肾癌,胃癌以及前列腺癌细胞中起到抑制作用。然而,KDM5D参与个体发育方面的研究较少,具体调控机理尚不清楚。本研究以
磁重联发生时,磁力线的拓扑结构发生改变的同时,储存在磁场中的能量快速地转化为等离子体的动能和热能。研究表明,空间及地面实验中的许多能量爆发现象均与磁重联相关。在地球磁层中,磁层顶磁重联是太阳风-磁层之间动量和能量输运的重要途径,而且磁层顶磁重联会进一步促进磁尾磁重联的发生,被认为是引起磁暴、地磁亚暴等重要空间天气现象的主要原因。此外,在磁约束核聚变装置托卡马克中,普遍存在着由磁重联引起的各种不稳定
随着X射线聚焦望远镜尺寸增大,传统电铸镍的力学性能已无法满足需求,具有更高机械强度的电铸镍钴合金成为代替电铸镍金属的首要选择。然而,电铸镍钴合金过程中产生的高内应力容易导致镜片变形。本文采用实验与算法结合的方式探究最佳镍和镍钴合金电铸工艺、通过不同表征手段研究内应力和结构变化规律、运用Comsol软件模拟工程电铸过程,为调控镜片内应力提供实验依据和电铸模型。研究了氨基磺酸体系中氨基磺酸钴含量、电流
能源和人们的生活息息相关,化石燃料的不可再生性和带来的环境问题促使着对新能源的探索,利用太阳能产氢成为了研究热点。同时,传统的工业合成氨工艺也有着高能耗、高污染的弊端,电催化产氨可以极大改善这种情况。设计或合成良好的催化剂无论是对光催化产氢还是电催化固氮而言都是首要问题。单层三氧化二铬(Cr2O3ML)具有成本低、比表面积大、储量大、可设计性强等优点,是一种很有前途的催化剂材料。本文以单层Cr2O
生命起源问题一直是世界性的难题。研究生命起源能帮助我们了解生命起源的时间、地理环境和气候条件、物质和热量的转换形式、新陈代谢的本质、遗传变异、自我复制等生理现象,指导我们未来的科技发展,促进人类科技的进步。三羧酸循环是一种中央合成代谢生化途径,其起源被认为可以追溯到地球化学,远在酶、RNA或细胞出现之前,其印记紧密地嵌在核心代谢的结构中。因此研究生命起源前三羧酸循环过程中物质之间的非生物传递的合成
异化铁还原菌是一种能够以胞外不溶性铁矿物为最终电子受体进行厌氧代谢,并获取能量用于自身生长繁殖的微生物,该代谢方式被称为铁呼吸。不同于传统的呼吸形式,铁呼吸代表了一种新型的代谢方式——胞外呼吸。从1987年第一株异化铁还原菌分离至今,微生物将胞内代谢有机物产生的电子跨膜运输传递到胞外不溶性电子受体的代谢形式便备受关注,继而不同的异化铁还原菌被分离出来。本研究以海洋铁腐蚀产物的厌氧富集培养物为接种物