关于一类带有扇区非线性和混合时滞的离散随机系统的控制问题研究

来源 :黑龙江大学 | 被引量 : 0次 | 上传用户:zwxcatcat111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究了一类带有扇区非线性和混合时滞的离散随机系统的控制问题,包括:状态反馈镇定、静态输出反馈镇定、动态输出反馈镇定、H∞控制、H∞保成本控制以及分散镇定问题.   第一,考虑带有扇区非线性和混合时滞的离散随机系统的反馈镇定问题.首先给出可由状态反馈镇定的充分条件.在此基础上,对系统的静态输出反馈镇定、动态输出反馈镇定问题进行研究.   第二,研究带有扇区非线性和混合时滞的离散随机系统的H∞保成本控制问题.设计了保成本控制器,使闭环系统在满足稳定和H∞性能指标的同时,系统的二次成本函数有上界.   第三,对带有扇区非线性和混合时滞的离散随机系统的分散控制问题进行研究.通过构造李亚普诺夫函数和应用线性矩阵不等式的方法,设计系统的分散控制器,并对结果进行仿真.   本文中的数值例子与仿真结果表明了所提出的各种设计方法的有效性.
其他文献
在工程设计中有很多的多目标优化问题,与单目标优化问题不同,在多目标优化问题中,往往各目标是相互冲突的,不存在使所有目标同时达到最优的解。如何得到与Pareto前沿充分接近
非线性泛函分析是现代数学中重要的研究领域之一.它通过建立抽象理论处理各类具体非线性问题,主要包括拓扑度理论,半序与锥理论,单调算子理论,变分法等.许多数学家在非线性泛函分
随着医药行业改革的逐步深入,医药企业的人才的竞争也愈发激烈,其核心竞争力也越来越表现为对人才的竞争.然而,随着医药企业的生存门槛大大提高,行业集中度不断提高,医药行业
随着市场需求不确定性的增加,企业之间的竞争逐渐增大,供应链协调已成为企业提高竞争力的关键.传统的供应链研究中,大多假设供应链成员是完全理性的.现实生活中,由于受众多因素的
本学位论文研究一类特殊的非线性半定规划问题,即凸二次半定规划(简记为CQSDP).这类问题在经济、金融、工程设计、控制论等领域有着广泛的应用.因此,研究凸二次半定规划问题的