【摘 要】
:
纳流控科学与技术(Nanofluidics)是研究和应用纳米通道或纳米结构中流体特性的一个新兴的领域。纳米孔道的孔径通常小于100 nm,在这个范围内,孔道环境会强烈影响流体的运动,如孔道的大小和形状、孔道的亲疏水性、电荷性质和主客体识别作用等因素都会对孔道内分子或离子的运动产生影响。在这些影响因素里,电荷相互作用因其应用广泛,效果显著,使得离子型纳米孔道成为研究者们研究的重点。本文围绕仿生人工纳
论文部分内容阅读
纳流控科学与技术(Nanofluidics)是研究和应用纳米通道或纳米结构中流体特性的一个新兴的领域。纳米孔道的孔径通常小于100 nm,在这个范围内,孔道环境会强烈影响流体的运动,如孔道的大小和形状、孔道的亲疏水性、电荷性质和主客体识别作用等因素都会对孔道内分子或离子的运动产生影响。在这些影响因素里,电荷相互作用因其应用广泛,效果显著,使得离子型纳米孔道成为研究者们研究的重点。本文围绕仿生人工纳米孔进行研究,第一章首先介绍了纳流的概念和生物体内的纳流现象,阐述了离子型纳米孔道的作用机理,然后简要概括了共价有机框架(COFs)膜材料的研究进展,最后提出用COFs膜材料设计纳流体系的思路。第二章介绍了论文中实验涉及的材料、设备、制备方法、表征方法和测试方法。通过界面聚合,在聚丙烯腈超滤膜(PAN)上构建了由三氨基胍盐酸盐(Tag)和三醛基间苯三酚(Tp)缩聚而成的COF分离层(TpTag-COF/PAN),制备了一种离子型多孔有机聚合物膜材料,并进行了浓差发电和温度检测两方面的性能评价。第三章介绍了一种用于将盐差能转换成电能的反向电渗析装置(RED)。由于材料具有高的电荷密度以及亚纳米级孔道(0.8 nm),这使得该材料在很大的浓度梯度下仍能表现出极高的阳离子选择性。实验系统地研究了不同浓度梯度下电动势、短路电流以及离子选择性的变化规律。最后,利用TpTag-COF/PAN膜搭建了微型电池组,为微电子设备供电,该材料与同类材料相比具有更好的发电性能,体现了 COFs作为新型纳流体系设计平台的巨大潜力。第四章构建了仿生温度传感器用于温度检测,基于理论推导,通过实验建立了电压和温度之间的线性关系。构建的离子型多孔有机聚合物膜有着出色的阳离子选择性,同时表现出对温度信号极高的灵敏度,达到1.25mV K-1,远优于生物体系。本章所搭建的仿生温度传感器具有较广的工作温度窗口以及高的信号转换稳定性,表现出其作为新一代温度传感器的巨大潜力。不仅如此,由于所构建的膜材料柔韧性良好,还可以用于设计人造皮肤,为智能可穿戴设备的设计提供新的选择。
其他文献
相控阵雷达由于波束指向灵活、抗干扰能力强和可靠性高等优势在电子战争领域有重要的应用前景。天线阵列的幅度分布影响波束形状,而相位分布影响波束指向。其中相位分布由移相单元实现,传统相控阵的移相单元采用电学处理方式,无法满足复杂环境下大带宽、大动态范围以及高频段等要求。光学真时延网络可以解决这个问题,同时还具有低传输损耗和抗电磁干扰等优势。相比分立器件搭建的光学真时延网络,利用集成光子学实现的真时延网络
传统相控阵天线由于受到孔径渡越时间的限制,只能在相对窄的信号带宽下进行工作。近年来,应用于相控阵天线的光学真延时技术被证明可以消除波束偏斜效应,同时具有重量轻、抗电磁干扰能力强和延时精度高等特点,因此受到广泛关注。随着光子集成领域技术与工艺的不断发展,片上真延时网络实现成为可能,基于片上真延时网络的光控相控阵逐渐成为研究热点。本论文研究可用于二维相控阵天线的集成光学真延时网络(Optical Tr
金黄色葡萄球菌(Staphylococcus aureus,S.aureus)是常见的食源性致病菌之一,广泛存在于肉禽蛋奶等营养丰富的食品中,能够在适当的条件下产生肠毒素引发食物中毒。在临床上,感染金黄色葡萄球菌可能会引发肺炎、心包炎等多种炎症。为了治疗此类由细菌感染所引发的疾病,各类抗生素被发明出来并且广泛地应用于人、动物甚至植物体之中。但是,随着抗生素在多个领域中大规模、不合理的使用,越来越多
本文研究了一种去除奥利司他原料药中低含量的前杂与后杂的模拟移动床(Simulated Moving Bed,SMB)分离方法。该方法在SMB中引入溶剂梯度操作模式,使Ⅱ区液相洗脱能力大于Ⅲ区液相洗脱能力,在合适的操作条件下,前杂或后杂在Ⅱ区随着流动相前移,在Ⅲ区则跟随柱子切换而后退,因此而被选择性地截留在Ⅱ区和Ⅲ区内部,从而与奥利司他获得分离。首先,研究了三区SMB选择性截留前杂的分离过程,考察了
空分流程从源头上决定了空分装置的投资、能耗、运行的安全性、运行的稳定性和可操作性等。空分流程的优化与选型过程是解决空分装置各利益相关方关切的过程。本文主要研究低温空气分离装置的流程选型方法。首先,利用ASPEN HYSYS流程计算软件对低温空气分离法所涉及的典型的外压缩流程、内压缩流程和液体空分流程进行了系统性地建模与计算,深入研究和分析了氮产品抽出方式、液体产品比例、产品氧压力和氩系统等关键因素
调控基因表达的表观遗传机制主要包括DNA甲基化、组蛋白修饰和非编码RNA,其中组蛋白修饰在染色质调控过程中起着至关重要的作用。组蛋白H3赖氨酸36二甲基化(H3K36me2)作为转录活性的标志,与基因转录水平呈正相关。目前为止,已发现七个组蛋白甲基转移酶可以催化H3K36二甲基化,包括NSD1、NSD2、NSD3、ASH1L、SETD3、SETMAR和SMYD2。致癌基因核受体结合SET结构域蛋白
2-氯-5-三氟甲基吡啶(简称2,5-CTF)是一种用于制备医药品、农用化学品及生物制剂的重要化工原料,特别是用于生产高效除草剂吡氟禾草灵、杀虫剂定虫隆以及杀菌剂氟啶胺等高效低毒、持续期长的含氟农药。2,5-CTF的合成方法较多,其中以3-甲基吡啶一步氟氯化法最有工业价值,该法基本被石原产业公司垄断,但近年已过专利保护期。2,5-CTF及其衍生物在国内的市场需求量很大,但是其合成工艺的研究至今仍未
氮素是植物生长发育过程中必需的一种大量元素,植物体内新陈代谢活动以及大量生命物质合成都需要氮素的参与。铵态氮(NH4+)和硝态氮(NO3-)作为植物最主要的无机氮源,在植物的生命过程中发挥着不可替代的作用。然而植物氮营养和代谢的调控仍有许多不明之处有待进一步深入研究。本研究前期主要利用低氮体系对实验室现有的拟南芥类受体激酶(Receptor-Like Kinase,RLK)T-DNA 插入突变体库
本文首先研究了镉系量子点的制备,考察了pH、有机配体等对量子点制备的影响。还研究pH对自组装法制备氨基化磁性纳米粒子的影响并构建了分子模型。并利用化学偶联的方法制备了磁性荧光纳米复合材料,研究其制备的机理。最后将复合纳米粒子应用于蛋白酶的固定化。首先,本实验利用水相法制备了镉系量子点,研究了不同pH值对CdTe量子点的影响,还研究了巯基乙酸(MAA,Mercapto acetic acid)和巯基
下击暴流是一种极端恶劣的天气现象,它往往会伴随着雷暴,产生一股强下沉气流并冲击地面,而后向周围辐射。不同于大气边界层风,它会在近地面产生瞬时的极大风速,对整个风场范围内的建筑结构造成严重的破坏。目前,很多学者对下击暴流的风场有过深入的研究,但是当下击暴流发生在海面上时,对风浪耦合作用下风场和波浪场的特征却尚未明晰,本文将通过数值模拟和试验研究的方法探讨下击暴流环境下风浪场的特征。具体的研究内容如下