一种与CMOS工艺兼容的硅基生物传感器研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:caonimadoucunzai
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
科技改变生活。普通传感器因为非智能化等原因将不能适应万物互连的智能时代。智能时代对传感器提出了更高的要求,因此智能传感器走入人们的视野。智能时代需要更加便携、高效的智能传感器,智能时代对智能传感器内部集成电路提出更高的要求。因为光互连技术能让智能传感器微型化、精准化、高效化,所以光互连技术将成为集成电路领域的研究重点。单片集成是智能传感器微型化和高效化的另一条件。目前的集成工艺多采用标准互补金属氧化物半导体(CMOS)集成工艺,单片集成需要各零部器件能与标准CMOS工艺兼容。片上全硅光电生物传感器由硅基光源、硅光波导、光电探测器和后端处理电路组成,各个部件都能与标准CMOS工艺兼容。硅是间接带隙半导体,硅的这种结构特性使得高效硅基发光器件和高传输效率硅光波导在设计和制作工艺上存在难点。装备有普通硅基发光器件和一般硅光波导的传感器的灵敏度不高。因此制造高效的硅基发光器件和高效的波导是片上微型全硅光电生物传感器领域的重点和难点。本文主要针对片上微型全硅光电生物传感器技术,从发光器件的结构、发光机理、波导的传输效率以及传感器的检测机理出发,对一种多晶硅级联结构的光源和一种结合二氧化硅与氮化硅(Si3N4)的优点的光波导结构以及倏逝波原理展开研究。该硅基光源是采用N+PN+PN+结构的多晶硅PN结级联发光器件,通过加反偏电压使器件反向雪崩击穿发光。该硅基光源采用载流子注入技术来提高发光效率,发光效率高达4.3×10-6,能与波导耦合。该硅基光源的光谱是连续光谱,波长范围是400-900 nm。波导结构利用二氧化硅与Si3N4的优点,使其能够满足光传输对低损耗的要求,解决可见光波段光电传输与CMOS工艺集成技术受带宽限制的瓶颈。波导传感器拥有薄的传感层,这个特性有助于分子的快速响应和高灵敏度检测。通过对直型波导的仿真得出,模型长、宽、高分别是40μm、6μm、6μm的波导在最佳光源入射角度(32.8°)的情况下,波导传输效果最好,传输效率平均高达95%。平均灵敏度为:折射率每增加0.1,相对光波强度改变5%。由波导仿真结果得出波导内芯的光波能量随着检测区域分析物的折射率的增加而下降,曲线呈现出单调性。通过光波能量的变化来实现介质折射率的传感,说明全硅光电生物传感器中倏逝波检测机理的可行性,也为高效全硅光电生物传感器的实现打下坚实的基础。
其他文献
在过去的几年时间里,4G的普及推动着移动互联网行业的飞速发展;可以预见在未来的几年时间中,5G的全面铺开也必将会给物联网带来新的发展。随着网速越来越快,人们对信号传输过程中的编译码时延要求也越来越高。近些年深度学习在很多领域已经取得了重大的突破,也越来越多地被应用于各行各业,其“一次训练到处推理”的特点非常适合用来处理信道译码任务。利用深度学习,在神经网络中学习到某种编码的特征,将带有这种特征的模
近年来,视频作为可视媒体数据的重要组成部分深深影响着人们的生活。视频信号在产生、传输过程中常受到噪声的影响,给用户带来不良的视觉体验。视频去噪是提升视频质量的有效手段,并且是视频处理领域的热点研究问题之一。近年来,基于经典信号处理方法的视频去噪已经遇到了技术瓶颈,基于深度学习的去噪方法正成为主流的视频去噪方法。基于深度学习的视频去噪方法虽然带来了去噪性能的显著提升,但仍无法充分利用视频内部的先验信
在已经步入信息时代的今天,我们的生活中每时每刻都在产生着不计其数的视频数据。而在安防领域,覆盖城市的监控摄像头网络,每天在保卫着人们的生命与财产安全的同时,也会产生大量的监控视频数据。在发生事故后,监控视频通常是用于还原事故原因、追查嫌疑人的有效法宝。但覆盖整座城市的监控网络,其产生的视频不仅数量巨大,而且并非全部视频都包含有用的信息,在人群稀疏处的监控摄像头可能拍摄的大部分视频都是背景。大量的监
伴随着世界更加数字化、信息化,人们开始渴望通信系统领域的相关技术应用可以更加智能化。近年来,一大批深度学习研究学者将目光逐渐深入到军事雷达通信和卫星导航等领域,不断地有基于深度学习的信号调制识别、载波信号检测等算法被提出。然而,深度学习算法复杂,运算起来通常比较耗时。在对相关技术的实际应用中,人们还是希望可以在小巧易携带且节能环保的嵌入式设备上实施操作,并希望能够在低功耗的嵌入式设备上,更快地实现
目前许多无线传感器网络已经用在了环境安全监测中,以至于当安全事故即将发生时安全监测中心能够根据传感器所采集过来的信息提前做出预警;但是当安全事故真正发生时,很多时候安全监测中心并没有提前做出预警或者预警不及时,从而导致人员伤亡。监测系统没有正常运行的原因之一是输入到监测系统中的传感器数据不正确,导致监测系统无法识别出当时环境中的真正情况,从而没有发出预警;因此在监测系统处理对数据进行处理之前,需要
大功率毫米波回旋行波管由于其输出功率大、工作带宽宽、效率高等优点,因此其能够在军事、航空、国防等重要领域发挥重要作用,而要使得回旋行波管正常需要大功率高压电源系统为其进行稳定的供能,因此必须确保大功率高压电源系统工作的稳定性。但因为行波管在工作时可能由于真空度异常而产生打火现象,从而对大功率高压电源系统造成损害,进而影响整个行波管的工作,并且由于大功率高压电源系统其内部关键信号的正常产生与否是确保
近些年来,人工智能在各个领域发展迅速,特别是在物体识别,视频监测等方面发挥着十分重要的作用,人工智能所表现出来的卓越成绩和优秀的学习能力,使得越来越多的学者对人工智能产生了极大的兴趣。人的大脑可以控制生物完成十分复杂的学习行为,受此启发使得神经网络得到了发展,卷积神经网络作为神经网络的重要分支,具有容易实现且易训练的特性,同时,卷积神经网络的运算速度也使其发展面临着更严峻的挑战。因此本文提出了一种
实际生活中我们常常需要对模糊图像进行处理,不管是由相机抖动,还是噪声干扰、本身分辨率不够等原因引起的,都需要一种有效的方法将不清晰的模糊的图像变为清晰的图像。近期,越来越多的卷积神经网络模型被提出,可以快速高效地实现超精度图像重建的功能。经过前期的文献调研,发现快速超分辨率卷积神经网络(Fast Super-Resolution Convolutional Neural Network,FSRCN
卷积神经网络自问世以来一直在计算机视觉领域发挥着重要的作用,随着科学研究的进步和技术的发展,卷积神经网络能够胜任愈发复杂的任务。然而随之而来的后果是模型越来越复杂,参数量也在不断地提升,神经网络的训练和推理需要消耗大量的时间资源以及硬件资源。传统的通用芯片如CPU、GPU平台在处理复杂神经网络模型的问题上遇到了瓶颈,于是人们开始把目光投入到专用加速芯片的研究上。研究人员通过针对性的体系结构设计,采
近年来,智能传感器在人们的生活中占的比重越来越大,多传感器微系统在工业界受到广泛关注。传感器的模拟前端主要包括接口电路和模数转换器(ADC),其作用是将各种携带传感信息的非电或电可转换信号转化为电压\电流信号,最终输出数字二进制码。针对于特定架构和功能设计的模拟前端电路不适用于物联网无线多传感器节点系统,因为这些专用模拟前端无法有效利用高度集成微系统中的共享资源。在可穿戴智能设备、生物医疗电子设备